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ABSTRACT

Signal processing methods for signals sampled at different rates are inves-

tigated and applied to the problem of signal and image reconstruction or super-

resolution reconstruction. The problem is approached from the viewpoint of linear

mean-square estimation theory and multirate signal processing for one- and two-

dimensional signals. A new look is taken at multirate system theory in one and two

dimensions which provides the framework for these methodologies. A careful analysis

of linear optimal filtering for problems involving different input and output sampling

rates is conducted. This results in the development of index mapping techniques that

simplify the formulation of Wiener-Hopf equations whose solution determine the op-

timal filters. The required filters exhibit periodicity in both one and two dimensions,

due to the difference in sampling rates. The reconstruction algorithms developed are

applied to one- and two-dimensional reconstruction problems.
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EXECUTIVE SUMMARY

As physical and manufacturing limitations are reached in state-of-the-art im-

age acquisition systems, there is increased motivation to improve the resolution of

imagery through signal processing methods. High-resolution (HR) imagery is desir-

able because it can offer more detail about the object associated with the imagery.

The “extra” information is of critical importance in many applications. For exam-

ple, HR reconnaissance images can provide intelligence analysts, greater information

about a military target, including its capabilities, operability and vulnerabilities, and

increase analysts’ confidence in such assessments. Likewise, HR medical images can

be crucial to a physician in making a proper diagnosis or developing a suitable treat-

ment regimen.

Super-resolution (SR) image reconstruction is an approach to this problem,

and this area of research encompasses those signal processing techniques that use

multiple low-resolution (LR) images to form a HR image of some related object. In

this work, a super-resolution image reconstruction approach is proposed from the

viewpoint of estimation and multirate signal processing for two-dimensional signals

or images.

Multirate signal processing theory deals with the analysis of a system com-

prised of multiple signals at different sampling rates and is fundamental to this re-

search. An example of such a system is a sensor network that collects and processes

data from various sensors, where the information from each sensor might be collected

at a different rate. In developing this theory, a number of relationships between sig-

nals in a multirate system are identified. The critical finding is that all of the signals

in a multirate system can be referred to a single “universal” rate for that system;

therefore, many of the results of standard signal processing theory can be adapted to

multirate systems through this observation.

xvii



The multirate theory developed here is applied to signal estimation, where one

signal is estimated from some other related signal or signals. The desired signal may

be corrupted by distortion or interference and is usually unobservable (at least at

the moment when the estimate is desired). A typical signal estimation application is

the recovery of a transmitted signal from a received signal that has been subject to

distortion and is corrupted by noise.

SR image reconstruction can be viewed as a problem in signal estimation,

where a related LR signal or signals is used to estimate an underlying HR signal.

From this perspective, the observation signal or signals, and desired signal form a

multirate system. This motivates the application of the theory of multirate systems

to signal estimation and the resultant extension of single-rate signal estimation theory

to the multirate case.

The particular branch of estimation theory applied in this work is optimal

filtering, where the error in estimation is minimized by using a weighted set of the

LR observation images to filter and estimate the HR image. The weights used in this

linear estimate are called filter coefficients and application of this theory results in

a set of equations that are solved to obtain these coefficients known as the Wiener-

Hopf (WH) equations. In this research, the multirate WH equations are developed

and shown to have a periodically time-dependent solution. Additionally, the concept

of index mapping, an extension of the multirate theory, is developed to determine the

required regions of the LR images required for estimation.

A new methodology is developed and presented, by application and extension

of the results of multirate and optimal estimation theory to the problem of SR image

reconstruction. This new method is applied to a set of LR images, and the resultant

HR image is compared with results from standard interpolation methods. In every

case, this method performed better than the standard methods.
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I. INTRODUCTION

As physical and manufacturing limitations are reached in state-of-the-art im-

age acquisition systems, there is increased motivation to improve the resolution of

imagery through signal processing methods. Improvements in this area have signifi-

cant commercial and military application, and in this work a super-resolution image

reconstruction approach is proposed from the viewpoint of estimation and multirate

signal processing for two-dimensional signals.

A. PROBLEM STATEMENT/MOTIVATION

Super-resolution (SR) imaging has recently become an area of great interest

in the image processing research community (see Section I.B.2). The ability to form

a high-resolution (HR) image from a collection of subsampled images has a broad

range of applications and has largely been motivated by physical and production

limitations on existing image acquisition systems and the marginal costs associated

with increased spatial resolution. Figure 1.1 depicts the SR concept where a collection

of low-resolution (LR) images of a scene are superimposed on a HR grid, available

for subsequent HR image reconstruction.

In this work, we propose a stochastic multirate approach to this problem,

adapting and extending the work in [Ref. 6, 7, 8, 9] to one- and two-dimensional

signals. The earlier work has focused on information fusion applications, i.e., on the

combination of observations from multiple sensors to perform tracking, surveillance,

classification or some other task. This work extends these concepts to reconstruction

of one-dimensional signals and SR image reconstruction.
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Figure 1.1. Super-resolution imaging concept, (After [Ref. 1]).

B. PREVIOUS WORK

1. Stochastic Multirate Signal Processing

Research in the area of stochastic multirate signal processing has been lim-

ited to a handful of investigators whose work has focused mainly on second moment

analysis of stochastic systems, from both temporal and spectral points of view, and

optimal estimation theory, including both Kalman and Weiner filtering theory.

Vaidyanathan et al. [Ref. 10, 11, 12] investigate how the statistical properties

of stochastic signals are altered through multirate systems. In [Ref. 10], several facts

and theorems are presented regarding the statistical behavior of signals as they are

passed through decimators, interpolators, modulators, and more complicated inter-
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connections. For example, the necessary and sufficient condition for the output of

an L-fold interpolation filter to be wide-sense stationary (WSS), given a WSS input,

is that the L-fold decimation of the filter coefficients results in no aliasing, i. e., the

filter must have an alias-free (L) support. Additionally, the authors illustrate an

application of this theoretical analysis to a multirate adaptive filtering scheme for

identification of band-limited channels. In [Ref. 11], this work is continued but ad-

dressed using bifrequency maps and bispectra. These two-dimensional (2-D) Fourier

transforms characterize all linear time-varying (LTV) systems and nonstationary ran-

dom processes, respectively. In fact, by using these concepts, the previous results are

simplified and even generalized to handle the case of vector systems. Finally, in

[Ref. 12], further analysis is conducted using bifrequency maps and bispectra, and a

bifrequency characterization of lossless LTV systems is derived.

Jahromi et al. [Ref. 13, 14, 15] consider methods to optimally estimate samples

of a random signal based on observations made by multiple observers at different

sampling rates (lower than the original rate). In particular, in [Ref. 13], the problem

of fusing two low-rate sensors in the reconstruction of one high-resolution signal is

considered when time delay of arrival (TDOA) is present. Using the “generalized

cross-correlation” technique, the delay is estimated and then signal reconstruction is

accomplished using perfect reconstruction synthesis filter bank theory. In [Ref. 14]

and [Ref. 15], optimal least mean-square estimation is used to develop an estimate

for samples of a high-rate signal. The estimator is a function of the power spectral

density of the original random signal, which is obtained using a method for inductive

inference of probability distribution referred to as the “maximum entropy principle”

[Ref. 16].

Chen et al. [Ref. 17, 18, 19, 20] investigate use of the Kalman filter and

Weiner filter in the reconstruction of a stochastic signal when only a noisy, downsam-

pled version of the signal can be measured. In [Ref. 17], the use of the Kalman filter

is investigated for interpolating and estimating values of an autoregressive or moving
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average stochastic signal when only a noisy, downsampled version of the signal can

be measured. The signal reconstruction problem is converted into a state estima-

tion problem for which the Kalman filter is optimal. Some extensions are discussed,

including the application of the Kalman reconstruction filter in recovering missing

speech packets in a packet switching network with packet interleaving. Simulation

results are presented, which indicate that the multirate Kalman reconstruction filters

possess better reconstruction performance than a Wiener reconstruction filter under

comparable numerical complexity. In [Ref. 18], a multirate deconvolution filter is pro-

posed for signal reconstruction in multirate systems with channel noise. Both filter

bank and transmultiplexer architectures are used to demonstrate the design proce-

dure. In [Ref. 19], a block state-space model is introduced where transmultiplexer

systems unify the multirate signals and channel noise. In [Ref. 20], the optimal signal

reconstruction problem is considered in transmultiplexer systems under channel noise

from the viewpoint of Wiener-Hopf theory. A calculus of variation method and a

spectral factorization technique are used to develop an appropriate separation filter

bank design.

Scharf et al. [Ref. 21] introduce a least squares design methodology for fil-

tering periodically correlated (PC) scalar time series. Since any PC time series can

be represented as a WSS vector time series where each constituent subsequence is

a decimated version of the original shifted in time, and vice versa, multirate filter

banks and equivalent polyphase realizations provide a natural representation for this

bidirectional relationship. This relationship affords means to develop a spectral rep-

resentation for the PC time series and hence develop causal synthesis and causal

whitening filters for the PC scalar time series. These techniques are used to solve

generalized linear minimum mean-square error (MMSE) filter design problems for

PC scalar time series. Note that this viewpoint can be extended to multirate systems

where the correlation between observation sequences is periodically correlated.
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Therrien et al. [Ref. 6, 22, 7, 8, 9, 23] develop theory and methodology

required for employing optimal linear filtering in estimating an underlying signal

from observation sequences at different sampling rates. The focus of these efforts is

on information fusion, i.e., on the combination of observations from multiple sensors

to perform tracking, surveillance, classification or some other task. In particular,

[Ref. 6], [Ref. 22] and [Ref. 7] consider a simplified problem where an underlying

signal is estimated from two sequences, one observed at full rate and the other at

half the rate. In [Ref. 8], least squares formulations are examined where the second

sequence has an arbitrary sampling rate. In [Ref. 9], a general approach is suggested

for any number of observation signals at arbitrary sampling rates. Finally, in [Ref.

23], previous theory and methods are developed to consider the problem of HR signal

and image reconstruction. This work forms the basis for the proposed research and

represents an advance in the area of super-resolution image reconstruction.

2. Super-Resolution Reconstruction/Imaging

Generally, super-resolution (SR) image reconstruction refers to signal process-

ing methods in which a high-resolution (HR) image is obtained from a set or ensemble

of observed low-resolution (LR) images [Ref. 1]. If each observed LR image is sub-

sampled (and aliased) and is translated by a different subpixel amount, this set of

unique observation images can be used for reconstruction. Figure 1.1 demonstrates

this conceptually. Both [Ref. 1] and [Ref. 2] provide general surveys of research to

date regarding this topic, and the following major areas of research are identified:

nonuniform interpolation, frequency domain, regularized SR reconstruction, projec-

tion onto convex sets (POCS), maximum likelihood (ML) projection onto convex sets

(ML-POCS) hybrid reconstruction, and other approaches [Ref. 1].

The most prevalent approaches in the literature are those based on nonuni-

form interpolation. These approaches typically use a three-stage sequential process,

comprised of registration, interpolation, and restoration. The registration step is a

mapping of pixels from each LR image to a reference grid, which results in a HR grid
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comprised of a set of nonuniformly spaced pixels. The interpolation step conforms

these nonuniformly spaced pixels to a uniform sampling grid, which results in the

upsampled HR image. Finally, restoration removes the effects of sensor distortion

and noise. This scheme is depicted in Figure 1.2. Representative works include [Ref.

24, 25, 26, 27].

Registration
or

Motion 
Estimation

Interpolation
onto 

HR Grid

Restoration
for 

Blur and
Noise 

Removal

x0

HR Image
y

x1

xM -1

LR Images

Figure 1.2. Typical model for nonuniform interpolation approach to SR, (From [Ref.
2]).

The frequency-domain approaches exploit the relationship between the discrete

Fourier transforms (DFT) of the LR images and the continuous Fourier transform

(CFT) of the desired HR image by using the information generated through relative

motion between the LR images, the aliasing generated by downsampling relative to

the desired HR image, and the assumption that the original HR image is bandlim-

ited. A set of linear system equations are developed, and the continuous Fourier

coefficients are found. The desired HR image is estimated from the CFT synthesis

equation. Tsai and Huang [Ref. 28] were the first to introduce this method and were

also the first researchers to address the problem of reconstructing a HR image from a

set of translated LR images. Kim et al. [Ref. 29] extended this approach to include

the presence of noise in the LR images using a recursive procedure based on weighted

least squares theory. Kim and Su [Ref. 30] further extended this approach by consid-
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ering noise and different blur distortions in the LR images. Vandewalle et al. [Ref.

31] consider offset estimation using a subspace minimization method followed by a

frequency-based reconstruction method based on the continuous and discrete Fourier

series.

The regularized SR reconstruction methods use regularization methods to solve

the often ill-posed inverse problem introduced in the frequency-domain approaches.

Typically, the ill-posed problems are a result of an insufficient number of LR images

or ill-conditioned blur operators [Ref. 1]. Generally, two approaches have been con-

sidered: deterministic and stochastic regularization. Deterministic approaches [Ref.

32, 33, 34, 35] typically use constrained least squares methods (CLS) while stochastic

approaches [Ref. 36, 37, 38] typically use maximum a posteriori (MAP) or maximum

likelihood (ML) methods.

POCS methods are based on set theoretic estimation theory [Ref. 39]. Rather

than using conventional estimation theory, the POCS formulations incorporate a pri-

ori knowledge into the solution and yield a solution consistent with user-furnished

constraints. Application of this method as applied to SR was introduced by Stark

and Oskoui [Ref. 40] and extended by Tekalp et al. in [Ref. 41, 42], which takes

into account the presence of both sensor blurring and observation noise, and suggests

POCS as a new method for restoration of spatially-variant blurred images.

ML-POCS hybrid reconstruction approaches estimate desired HR images by

minimizing the ML or MAP cost functional while constraining the solution within

certain closed convex sets in accordance with POCS methodology [Ref. 37].

There are a number of other areas that are considered in the literature, and

some examples are presented here. One approach attempts to reconstruct a HR image

from a single LR image and is referred to as improved definition image interpolation

[Ref. 43]. Another area of study, referred to as iterative back-projection [Ref. 44, 45,

46], uses tomographic projection methods to estimate a HR image. Researchers are

also considering the SR problem when no relative subpixel motion exists between LR

7



images. By considering differently blurred LR images, motionless SR reconstruction

can be demonstrated [Ref. 47, 48]. Milanfar et al. analyze the joint problem of

image registration and HR reconstruction in the context of fundamental statistical

performance limits. By using the Cramér-Rao bound, they demonstrate ability to

bound estimator performance in terms of MSE, examining performance limits as

they relate to such imaging system parameters as the downsampling factor, signal-to-

noise ratio, and point spread function. Finally, researchers are considering adaptive

filtering approaches to the SR problem, considering modified recursive least squares

(RLS), linear mean-square (LMS) and steepest descent methods [Ref. 49].

C. THESIS ORGANIZATION

This manuscript is organized as follows. The current chapter is introductory

and presents the motivation for this work, defining the problem and outlining the

approach used to solve it. Additionally, a review of the relevant literature is included,

both in the area of stochastic multirate signal processing and super-resolution image

reconstruction.

The second chapter introduces various fundamental signal processing and

mathematical concepts required for theoretic and application-related developments

in future chapters. These include various signal taxonomies and representations, a

review of relevant topics in second-moment analysis, and required number theory and

linear algebra concepts. Further, this chapter, establishes notation and conventions

for purposes of consistency throughout this work.

In the third chapter, the theory of multirate systems is established. In this

analysis, the relationships between a multirate system and its constituent signals are

characterized, the system theory for multirate systems is developed, and the
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representation of discrete linear systems is presented from a system theoretic point

of view. Finally, a linear algebraic approach is introduced to model various multirate

operations for use in reconstruction applications.

Chapter IV develops the concept of multirate signal estimation and is founda-

tional in developing stochastic approaches to solving the signal reconstruction prob-

lem. The optimal filtering problem is introduced in terms of the ordinary Wiener-

Hopf equation and is then expanded, first to the single-channel, multirate estimation

problem and then to the multi-channel, multirate problem. Also in this chapter, the

relationship between samples in one signal domain to those in a different signal do-

main (signals at different rates) is established through the concept of index mapping,

which allows for a very general representation of the multirate Wiener-Hopf equations.

Chapter V considers the problem of signal reconstruction in the one- and two-

dimensions. In this chapter, the problem is stated for both cases, observation models

are established, reconstruction approaches and algorithms are developed, and then

the results of each algorithm are presented.

Finally, Chapter VI provides conclusory remarks on the findings of this re-

search and establishes direction for future work related to this research.
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II. PRELIMINARIES, CONVENTIONS, AND

NOTATION

In the development of approaches to signal and image reconstruction, a num-

ber of fundamental concepts from the areas of signal processing and mathematics are

required. In this chapter, a foundation is set in these areas upon which the theory of

multirate signals and multirate estimation will be built. In doing so, we present the

underlying concepts, but also emphasize required definitions, notations and conven-

tions, in order to ensure consistency and accuracy, and to facilitate understanding.

A. SIGNALS

1. Etymology

Etymologically speaking, the word signal is derived from the Latin signum,

which can be rendered as “a sign, mark, or token;” or in a military sense, “a standard,

banner, or ensign;” or “a physical representation of a person or thing, like a figure,

image, or statue [Ref. 50].” Generally, the Latin seems to imply that a signum is

something that conveys information about or from someone or something else. The

relevant modern dictionary definition of signal carries this idea further: “a detectable

physical quantity or impulse by which messages or information can be transmitted

[Ref. 51].”

In the area of electrical engineering known as digital signal processing, a related

but more helpful definition of a signal is a collection of information, usually a pattern

of variation [Ref. 52], that describes some physical phenomenon. In other words, a

signal conveys relevant information about some physical phenomena (signum). The

variation in electrical voltage measured at the input of an electronic circuit, the
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variation in acoustic pressure sensed by a microphone recording a musical concert,

or the variation in light intensity captured by a camera recording a scene are all

examples of signals treated in modern signal processing.

2. Signal Definitions

Throughout this presentation, various types of signals and sequences are in-

troduced and analyzed. In this section, for the sake of clarity, the definition of such

signals and sequences are established, as are the associated conventions and nota-

tions. Let us begin with one-dimensional signals that are scalar-valued. We define

these more precisely below.

a. Deterministic Signals and Sequences

A deterministic analog signal or simply an analog signal is defined as

follows.

Definition 1. A deterministic analog signal, denoted by {x(t)}, or when it is clear

from context x(t), is a set of ordered measurements such that for every t ∈ R, there

exists a corresponding measurement m = x(t). If all such measurements are members

of the extended real numbers1, then x(t) is said to be a real-valued (or real) analog

signal. If the measurements are members of the complex numbers, then the signal is

said to be a complex-valued (or complex) analog signal.

An analog signal is frequently represented by a mathematical function,

which may or may not be continuous. For example, the signal known as the unit-step,

defined by

u(t) =

⎧⎪⎨
⎪⎩

1 t ≥ 0

0 t < 0

(2.1)

is well known in signal processing, but the function representing it is not continuous

(at t = 0).

1The extended real numbers are defined as R̄ = R ∪ {−∞,∞}.
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Although many signals are represented by functions defined on the real

number line, our definition of a signal is not necessarily the same as the mathematical

definition of a function. The set of analog signals commonly includes the unit impulse,

which (strictly speaking) is not a function at all but a distribution or “generalized

function,” described by a careful limiting process [Ref. 53, 54] to insure that the

resulting entity satisfies certain conditions when it appears in an integral.

Signals may have many other properties that provide for further char-

acterization. One property of concern in this work is that of periodicity. A signal is

said to be periodic if there exists a positive real number P such that

x(t) = x(t + P ) for all t. (2.2)

The smallest such P is called the period.

A deterministic sequence (or simply a sequence) is defined as follows.

Definition 2. A deterministic sequence, denoted by {x[n]}, or when clear from con-

text x[n], is a countable set of ordered measurements such that for every n ∈ Z, there

exists a corresponding measurement m = x[n]. If all such measurements are members

of the extended real numbers, then x[n] is said to be a real-valued (or real) sequence.

If the measurements are members of the complex numbers, then the sequence is said

to be a complex-valued (or complex) sequence.

A sequence x[n] is said to be periodic if there exists a positive integer

N such that

x[n] = x[n + N ] for all n, (2.3)

and the smallest such N is called the period. Note that not all sequences derived

by sampling a periodic analog signal are periodic. For example, the analog signal

x(t) = cos(2πf0t + φ) is periodic for any real number f0, while the sequence x[n]

defined by x[n] = x(nTs) = cos(2πf0nTs + φ) is periodic only if f0Ts is a rational

number.
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Observe that both a signal and a sequence are defined by an ordered

set of measurements, but over a different domain (R or Z). Further, parentheses are

used in the notation for an analog signal x(·) while square brackets are used for a

sequence x[·] (to indicate the discrete nature of its domain). The variable t or n is

frequently used to represent time, although the units of “time” need to be specified

in any real-world problem. In the case of a sequence, n is just an index variable used

to order the measurements, and there is need in signal processing to define what will

be called a deterministic discrete-domain signal or simply discrete-domain signal .

Definition 3. A deterministic discrete-domain signal, denoted by {xT (t)}, or when

it is clear from context xT (t), is a set of ordered measurements such that for every

t ∈ ΨT , there exists a corresponding measurement m = xT (t), where

ΨT = {nT ; n ∈ Z}, and T is a positive real number called the sampling interval. The

signal domain is defined as the set ΨT . If all such measurements are members of the

extended real numbers, then xT (t) is said to be a real-valued (or real) discrete-domain

signal. If the measurements are members of the complex numbers, then the signal is

said to be a complex-valued (or complex) discrete-domain signal. When t represents

time, a discrete-domain signal may be called a discrete-time signal.

This definition of a discrete-domain signal is similar to that of an analog

signal except that the signal is defined on a countable set ΨT . An important obser-

vation is that a discrete-domain signal is equivalent to a sequence and an associated

sampling interval T or its reciprocal F = 1/T ,

xT (t) ≡ {x[n], T} ≡ {x[n], F} for n ∈ Z. (2.4)

The quantity F is called the sampling rate (in samples/sec or Hz) and in discussing

discrete-domain signals, it is common to refer to the sequence and its sampling rate.

For example, we may use the expression “x[n] at a rate of 20 kHz” to describe a

discrete-domain signal, which has a sampling interval of T = 0.05 msec.
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It is also common not to mention the sampling rate if the sampling

rate is common throughout a system (single-rate system). On the other hand, when

dealing with a multirate system, it is common to use different letters, such as n and m,

to designate sequences, for example, x[n] and y[m], to indicate that these sequences

represent discrete-domain signals with different sampling rates.

Figure 2.1 illustrates a discrete-domain signal. Note that the signal is

defined only on the points t = nT and is undefined everywhere else. Note, also, that

while a discrete-domain signal may be derived by sampling an analog signal, this is not

always the case. Any sequence, regardless of how it is computed (say in MATLAB or

on an ASIC chip) when combined with a sampling interval, defines a discrete-domain

signal. The corresponding analog signal need not exist unless (as in the output of a

digital signal processing chain) some special action is taken to construct it.

0 0.05 0.10 0.15 0.20 0.300.25-0.05-0.10-0.15-0.20-0.25-0.30
t

( )Tx t

Figure 2.1. Graphical representation of a discrete-domain signal xT (t) with sampling
interval T = 0.05. Note that the signal is defined only at t = nT ; n ∈ Z.

b. Random Signals and Sequences

In statistical signal processing, a probabilistic model is necessary for

signals. This model is embedded in the concept of a random signal or a stochastic

signal. A real random signal or (real stochastic signal) is defined as follows.
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Definition 4. A real random signal, denoted by {X(t)}, or when it is clear from

context X(t), is a set of ordered random variables (representing measurements) such

that for every t ∈ R, there exists a corresponding random variable X(t).

Note that when the context is clear, a random signal may be designated by a lower

case variable, i.e., x(t), d(t), etc.

Since a random variable is a mapping from some sample space to the

real line, the definition for a complex random signal requires special caution. The

following definition is therefore provided.

Definition 5. A complex random signal or (complex stochastic signal), denoted by

{Z(t)}, is defined by Z(t) = X(t)+jY (t), where X(t) and Y (t) are real random analog

signals defined on a common domain. In other words, for every t ∈ R, there exists a

pair of corresponding random variables X(t) and Y (t) such that Z(t) = X(t)+jY (t).

Again, we may use Z(t) instead of {Z(t)} when the meaning is clear from context.

Random sequences and random discrete-domain signals can be defined

in a similar manner.

Definition 6. A real random sequence or (real stochastic sequence), denoted by

{X[n]}, is a countable set of ordered random variables (representing measurements)

such that for every n ∈ Z, there exists a corresponding random variable X[n]. A

complex random sequence can be defined in a manner similar to that of a complex

random signal.

Note that when the context is clear, a random sequence may be designated by a lower

case variable, i.e., x[n], d[n], etc.

Definition 7. A random discrete-domain signal, denoted by {XT (t)}, or when it is

clear from context XT (t), is a set of ordered random variables (representing mea-

surements) such that for every t ∈ ΨT , there exists a corresponding random variable

XT (t), where ΨT = {nT ; n ∈ Z}, and T is the sampling interval.
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A random discrete-domain signal is sometimes also referred to as a time series ; how-

ever, the use of that term in the literature is not always consistent.

c. Multi-channel Signals and Sequences

In signal processing, it is often the case that a system may contain

signals or sequences that are derived from multiple sources or multiple sensors. In

order to represent such signals and sequences, multi-channel signals and sequences

are defined. A multi-channel signal is a set of (single-channel) signals that share a

common domain and is represented by a vector

x(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1(t)

x2(t)
...

xN(t)

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

whose components x1(t), x2(t), . . . , xN(t) are (analog or discrete-domain) signals as

defined earlier. The signals may be real or complex, deterministic or random. By

convention, bold face and vector notation are used to represent such signals as in

x(t) =

⎡
⎣ cosωt

− sinωt

⎤
⎦ ,

or in

X(t) =

⎡
⎣ A cos(ωt + Φ)

−A sin(ωt + Φ)

⎤
⎦ ,

where X(t) represents a random signal defined by random variables A and Φ.

A multi-channel sequence

x[n] =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1[n]

x2[n]
...

xN [n]

⎤
⎥⎥⎥⎥⎥⎥⎦
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is represented by a vector whose components x1[n], x2[n], . . . , xN [n] are sequences as

defined earlier. Again, all of the terms describing an individual sequence (e.g., real,

complex, etc.) can be applied to a multi-channel sequence.

d. Two-dimensional Signals and Sequences

Since two-dimensional signals and sequences are at the heart of image

processing, it is helpful to characterize the 2-D counterparts to the familiar one-

dimensional signals and sequences already presented. A two-dimensional (2-D) analog

signal is defined as follows.

Definition 8. A two-dimensional (2-D) analog signal, denoted by {x(t1, t2)}, or when

it is clear from context x(t1, t2), is a set of ordered measurements such that for every

pair (t1, t2) ∈ R2, there exists a corresponding measurement m = x(t1, t2). Two-

dimensional signals can be real or complex, deterministic or random. It is sometimes

convenient to represent a 2-D signal with a bold face argument t = (t1, t2) ∈ R2. Thus,

the 2-D signal would be denoted by {x(t)} or x(t) when clear from the context.

Although a sequence seems to imply an ordered set of terms in one

dimension, it is common in signal processing to extend the meaning to apply to

signal defined on a two-dimensional domain. A two-dimensional sequence and two-

dimensional discrete-domain signal are thus defined as follows.

Definition 9. A two-dimensional sequence, denoted by {x[n1, n2]}, or when it is

clear from context x[n1, n2], is a set of ordered measurements such that for every pair

(n1, n2) ∈ Z2, there exists a corresponding measurement m = x[n1, n2]. 2-D sequences

can be real or complex, deterministic or random; they may also be represented as

{x[n]} or x[n], where the boldface argument denotes the ordered pair (n1, n2) ∈ Z2.

Definition 10. A two-dimensional discrete-domain signal, denoted by {xT1T2(t1, t2)}
or xT1T2(t1, t2), is a set of ordered measurements such that for every pair (t1, t2) in the

domain ΨT1T2 = ΨT1×ΨT2, where ΨT is as defined earlier, there exists a corresponding

measurement m = xT1T2(t1, t2), and T1 and T2 are the associated sampling intervals.
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For convenience in notation, we may use xT(t) and ΨT to denote the 2-D signal

and its domain, where T represents the ordered pair (T1, T2) of sampling intervals.

Again, note that a two-dimensional discrete-domain signal can be real or complex,

deterministic or random.

The image projected on the film plane of a camera is an example of

a 2-D analog signal. If film is thought of as a continuous medium, then the image

captured on the film is also a representation of a 2-D analog signal. If the image is

projected onto a sensor array as in a digital camera, then the resulting sampled image

is represented by a 2-D discrete-domain signal.

Signals can be both multi-dimensional and multi-channel. A common

example is a color image where the domain is two-dimensional (horizontal and vertical

spatial variables), and there are 3 channels corresponding to the three components of

a color space, such as RGB (red, green, blue), CMY (cyan, magenta, yellow) or HSI

(hue, saturation, intensity).

Two-dimensional random signals and sequences are similar to their cor-

responding deterministic representations except that the measurements are repre-

sented by random variables.
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e. Summary of Notation and Convention

A summary of the various signal representations is provided in Ta-

ble 2.1.

Representation Name

x(t) Deterministic analog signal, analog aignal
x[n] Deterministic sequence
xT (t), x[n]T Deterministic discrete-domain signal with sampling in-

terval T , Discrete-domain signal
x(t1, t2), x(t) Two-dimensional deterministic analog signal, 2-D analog

signal
x[n1, n2], x[n] Two-dimensional deterministic sequence, 2-D determin-

istic sequence
xT1T2(t1, t2), xT(t) Two-dimensional deterministic discrete-domain signal

with sampling intervals T1 and T2, 2-D discrete-domain
signal

X(t) Random analog signal
X[n] Random sequence

Table 2.1. Summary of signal representations.

B. CONCEPTS IN LINEAR ALGEBRA

1. Random Vectors

Often, it is necessary to process some finite number of samples of a random

sequence. Such a finite-length sequence can be conveniently represented by a random

vector [Ref. 5]. This provides for compact notation and formulation and solution of

problems in a linear algebra sense. A random sequence X[n] restricted to some
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interval 0 ≤ n ≤ N − 1 can be represented by an N -component random vector x as

shown in Figure 2.2 and written as

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

X[0]

X[1]
...

X[N − 1]

⎤
⎥⎥⎥⎥⎥⎥⎦ . (2.5)

X[n]

n0 1
N-1

...

[0]
[1]

[ 1

X
X

x

X N

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

�

Figure 2.2. Graphical representation of a finite-length random sequence as a random
vector.

2. Kronecker Products

The Kronecker product, also known as the direct product or tensor product,

has its origins in group theory [Ref. 4] and has important applications in a number of

technical disciplines. In this study, the Kronecker product is used to develop matrix

representations of various multirate operations.

Definition 11. Let A be an m× n matrix (with entries aij) and let B be an r × s

matrix. Then the Kronecker product of A and B is the mr × ns block matrix

A⊗B =

⎛
⎜⎜⎜⎜⎜⎜⎝

a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
. . .

...

am1B am2B . . . amnB

⎞
⎟⎟⎟⎟⎟⎟⎠ . (2.6)

Equation (2.6) is also called a right Kronecker product as opposed to the

definition A ⊗′
B = B ⊗A, which is called a left Kronecker product. Since there is

no need to use both, we will stick with the more common definition (2.6).
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A summary of some important properties of the Kronecker product is provided

in Table 2.2.

A⊗ (αB) = α(A ⊗B)
(A + B)⊗C = A⊗C + B⊗C
A⊗ (B⊗C) = (A ⊗B)⊗C
(A⊗B)T = AT ⊗BT

(A⊗B)(C⊗D) = AC ⊗BD
(A⊗B)−1 = A−1 ⊗B−1

Table 2.2. Some Kronecker product properties and rules, (After [Ref. 4]).

3. Reversal of Matrices and Vectors

In signal processing, it is a common requirement to view signals as evolving

either forward or backward in time. A well-known example is the convolution opera-

tion, where the linear combination of terms involves a time-reversed version of either

the input signal or the system impulse response. Since, in discrete-time signal pro-

cessing, signals are often represented by vectors, it is useful to define the operation

of reversal for vectors and matrices.

The reversal of a vector x is the vector with its elements in reverse order.

Given the vector

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xN

⎤
⎥⎥⎥⎥⎥⎥⎦ , its reversal is x̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

xN

xN−1

...

x1

⎤
⎥⎥⎥⎥⎥⎥⎦ . (2.7)

Note that the notation for the reversal is x̃, and it is used just like notation for the

transposition of a vector or matrix.
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The reversal of a matrix A is the matrix with its column and row elements in

reverse order. Given the matrix A ∈ RM×N

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1N

a21 a22 . . . a2N

...
...

. . .
...

aM1 aM2 . . . aMN

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

its reversal Ã ∈ RM×N is given by

Ã =

⎡
⎢⎢⎢⎢⎢⎢⎣

aMN . . . aM2 aM1

...
...

. . .
...

a2N . . . a22 a21

a1N . . . a12 a11

⎤
⎥⎥⎥⎥⎥⎥⎦ . (2.8)

Note that the reversal of a vector or matrix can be formed by the product of a

conformable counter identity and the vector or matrix itself.

Some common properties of the reversal operator are included in Table 2.3.

In particular, the reversal of matrix and Kronecker products (see Section II.B.2) are

products of the reversals, and the operation of reversal commutes with inversion,

conjugation and transposition.

Quantity Reversal

Matrix product AB ÃB̃

Matrix inverse A−1 (Ã)−1

Matrix conjugate A∗ (Ã)∗

Matrix transpose AT (Ã)T

Kronecker product A⊗B Ã⊗ B̃

Table 2.3. Some properties of the reversal operator, (After [Ref. 5]).
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4. Frobenius Inner Product

In the development of approaches to two-dimensional signal reconstruction, it

is convenient to express the related linear estimates in terms of the Frobenius inner

product.

Definition 12. For any A,B ∈ Rm×n, with elements aij, bij, the Frobenius inner

product of the matrices is defined as

〈A,B〉 = tr(ABT ) =
m∑

i=1

n∑
j=1

aijbij. (2.9)

C. MOMENT ANALYSIS OF RANDOM PROCESSES

Generally, a complete statistical model is unavailable when analyzing systems

of random processes. Either the required joint density functions are unavailable, or

they are too complex to be of utility. If the random processes under consideration are

Gaussian, then the system can be fully specified by only its first two moments [Ref. 5].

Even if the processes are not Gaussian, second moment analysis is often adequate in

characterizing the statistical relationships between signals in such systems and forms

the basis for any additional analyses. This section introduces the required definitions

and relevant properties associated with second moment analysis [Ref. 5].

1. Definitions and Properties

Given the random process X[n], the first moment or mean of the random

process is defined by

mX[n] = E{X[n]}, (2.10)

where E{·} denotes expectation.

The correlation between any two samples of the random process X[n1] and

X[n0] is described by the correlation function or autocorrelation function, which is
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defined by

RX [n1, n0] = E{X[n1]X
∗[n0]}. (2.11)

In certain applications, and extensively in this work, it is convenient to define

a time-dependent correlation function as

RX [n; l] = E{X[n]X∗[n− l]}, (2.12)

and the various definitions and relationships introduced in this section will be based

on this “time-dependent” representation.

The covariance between any two samples of the random process X[n] and

X[n− l] is described by the time-dependent covariance function, which is defined by

CX[n; l] = E{(X[n]−mX [n])(X[n− l]−mX[n− l])∗}. (2.13)

The relationship between the correlation function and the covariance function is

RX [n; l] = CX [n; l] + mX[n]m∗
X[n− l], (2.14)

hence when X[n] is a zero-mean random process,

RX [n; l] = CX [n; l].

If we consider two random processes, X[n] and Y [n], the correlation between

any two samples of the random processes is described by the time-dependent cross-

correlation function, which is defined by

RXY [n; l] = E{X[n]Y ∗[n− l]}. (2.15)

An expression can be written for the time-dependent cross-covariance function as

CXY [n; l] = E{(X[n]−mX[n])(Y [n− l]−mY [n− l])∗}. (2.16)

The relationship between the cross-correlation function and the cross-covariance func-

tion is

RXY [n; l] = CXY [n; l] + mX[n]m∗
Y [n− l], (2.17)
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hence when X[n] and Y [n] are zero-mean random processes,

RXY [n; l] = CXY [n; l].

Two random processes are called orthogonal if RXY [n; l] = 0 and uncorrelated if

CXY [n; l] = 0.

2. Stationarity of Random Processes

Recall that a random process is wide-sense stationary (WSS) if

1. the mean of the random process is a constant, mX [n] = mX , and

2. the correlation function is a function only of the spacing between samples, i.e.,

RX [n; l] = RX [l].

and that two random processes are jointly wide-sense stationary (JWSS) if

1. they are each WSS, and

2. their cross-correlation function is a function only of the spacing between sam-

ples, i.e., RXY [n; l] = RXY [l].

Under the assumptions of WSS and JWSS, the mean, correlation and covari-

ance functions are summarized in Table 2.4.

3. Matrix Representations of Moments

Using the vector representation (2.5) for a random signal, a number of impor-

tant concepts and properties can be defined. The first moment or mean of a random

vector is defined by

mX = E{X} =

⎡
⎢⎢⎢⎢⎢⎢⎣

E{X[0]}
E{X[1]}

...

E{X[N − 1]}

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

mX [0]

mX [1]
...

mX[N − 1]

⎤
⎥⎥⎥⎥⎥⎥⎦ , (2.25)
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Mean Function mX = E{X[n]} (2.18)

(Auto)correlation Function RX [l] = E{X[n]X∗[n− l]} (2.19)

Covariance Function CX [l] = E{(X[n]−mX)(X[n− l]−mX)∗} (2.20)

Interrelation RX[l] = CX[l] + |mX|2 (2.21)

Cross-correlation Function RXY [l] = E{X[n]Y ∗[n− l]} (2.22)

Cross-covariance Function CXY [l] = E{(X[n]−mX)(Y [n− l]−mY )∗} (2.23)

Interrelation RXY [l] = CXY [l] + mXm∗
Y (2.24)

Table 2.4. Summary of definitions and relationships for stationary random processes,
(After [Ref. 5]).

which is completely specified by the associated mean function mX[n] in (2.10). If the

random process is WSS, then the mean function is independent of the sample index

and mX is defined by a vector of constants

mX =

⎡
⎢⎢⎢⎢⎢⎢⎣

mX

mX

...

mX

⎤
⎥⎥⎥⎥⎥⎥⎦ . (2.26)

The correlation matrix represents the complete set of second moments for the

random vector and is defined by

RX = E{XX∗T}. (2.27)
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The correlation matrix thus has the explicit form

RX =

⎡
⎢⎢⎢⎢⎢⎢⎣

E{|X[0]|2} E{X[0]X∗[1]} . . . E{X[0]X∗[N − 1]}
E{X[1]X∗[0]} E{|X[1]|2} . . . E{X[1]X∗[N − 1]}

...
...

. . .
...

E{|X[N − 1]X∗[0]} E{X[N − 1]X∗[1]} . . . E{|X[N − 1]|2}

⎤
⎥⎥⎥⎥⎥⎥⎦ (2.28)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

RX [0; 0] RX [0;−1] . . . RX [0;−N + 1]

RX [1; 1] RX[1; 0] . . . RX [1;−N ]
...

...
. . .

...

RX [N − 1; N − 1] RX [N − 1; N − 2] . . . RX [N − 1; 0]

⎤
⎥⎥⎥⎥⎥⎥⎦ , (2.29)

which is completely specified by the associated correlation function RX [n; l] in (2.12).

If the random process is WSS, then the correlation is a function of only the sample

spacing and has the form of a Toeplitz matrix:

RX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RX[0] RX [−1] RX [−2] . . . RX [−N + 1]

RX[1] RX[0] RX [−1]
. . . RX [−N ]

RX[2] RX[1]
. . .

. . . . . .
...

...
. . .

. . .
...

RX [N − 1] RX [N − 2] . . . RX [1] RX [0]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.30)

This matrix is completely specified by the associated correlation function RX [l] in

(2.19).

The cross-correlation matrix represents the complete set of second moments

between two random vectors X ∈ RN and Y ∈ RM and is defined by

RXY = E{XY∗T }, (2.31)

28



and the associated correlation matrix has the form

RXY =

⎡
⎢⎢⎢⎢⎢⎢⎣

RXY [0; 0] RXY [0;−1] . . . RXY [0;−M + 1]

RXY [1; 1] RXY [1; 0] . . . RXY [1;−M ]
...

...
. . .

...

RXY [N − 1; N − 1] RXY [N − 1; N − 2] . . . RXY [N − 1; N −M ]

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

(2.32)

which is completely specified by the associated cross-correlation function RXY [n; l] in

(2.15). In general, RXY is not a square matrix (unless N = M). If the associated

random processes are JWSS, then the cross-correlation is a function of only the sample

spacing

RXY =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RXY [0] RXY [−1] . . . RXY [−M + 1]

RXY [1] RXY [0]
... RXY [−M ]

RXY [2] RXY [1]
. . . . . .

...
... . . .

...

RXY [N − 1] RXY [N − 2] . . . RXY [N −M ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.33)

which is completely specified by the associated correlation function RX [l] in (2.22).

In general, such matrices will exhibit Toeplitz structure but will not be Hermitian

symmetric [Ref. 5]. Similar expressions and statements can be made concerning

the cross-covariance matrix and function. The essential definitions, properties, and

relations for the quantities discussed in this section are listed in Table 2.5.

4. Reversal of First and Second Moment Quantities

Since the operations of expectation and reversal commute, we have the follow-

ing relations for the first and second moment quantities

mX̃ = E{X̃} = m̃X, (2.34)

and

RX̃ = E{X̃X̃∗T} = R̃X (CX̃ = C̃X ). (2.35)
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Mean mX = E{X}
(Auto)correlation RX = E{XX∗T}
Covariance CX = E{(X−mX)(X−mX)∗T}

Interrelation RX = CX + mXmX
∗T

Cross-correlation RXY = E{XY∗T}
Cross-covariance CXY = E{(X −mX)(Y −mY)∗T}

Interrelation RXY = CXY + mXmY
∗T

Symmetry RX = RX
∗T , CX = CX

∗T

Relation of RXY and CXY RXY = RYX
∗T , CXY = CYX

∗T

Table 2.5. Summary of useful definitions and relationships for random processes,
(After [Ref. 5]).

Further, if RX (CX) is a Toeplitz correlation (covariance) matrix corresponding to a

WSS random process, it follows that

R̃∗
X = RX. (2.36)

D. NUMBER THEORY

Number theory, “. . . the branch of mathematics concerned with the study of

the properties of the integers [Ref. 55],” is a natural framework for the analysis of

discrete-time systems, where the independent variables, by definition, are integers.
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In particular, since in this analysis of multirate systems, notions of divisibility, factor-

ization and congruence are integral, the ensuing discussion is provided to introduce

and define these and related concepts [Ref. 55, 56, 57, 58].

1. Division Algorithm Theorem

The elementary operation of division forms the basis of much of what is to

follow and is expressed by the division algorithm theorem.

Theorem 1. Let a and b be integers with a > 0. Then there exists unique integers

q and r satisfying

b = qa + r, 0 ≤ r < a, (2.37)

where q is called the quotient and r is called the remainder.

The proof of this can be found in many texts, e.g., [Ref. 55, 56, 57].

Example 1. A specific example demonstrating the division algorithm theorem is pro-

vided. Given integers a = 3 and b = 22, we find unique integers q = 7 and r = 1 that

satisfy (2.37). The quotient is q = 7; the remainder is r = 1.

2. Divisibility

Definition 13. Let a and b be integers. Then a divides b, written a|b, if and only if

there is some integer c such that b = ca. When this condition is met, the following

are equivalent statements: (i) a is a factor of b, (ii) b is divisible by a, and (iii) b is a

multiple of a. If a does not divide b, we write a � b.

Example 2. This example illustrates the concept of divisibility for a number of integer

pairs.

3|12, 7|21, 9|108, 12|144;

4 � 5, 7 � 8, 8 � 7, 3 � 22.
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a. Greatest Common Divisor

Definition 14. Let a and b be integers. The integer d is called the greatest common

divisor of a and b, denoted by gcd(a, b), if and only if

1. d > 0,

2. d|a and d|b,

3. whenever e|a and e|b, we have e|d.

The integers a and b are said to be relatively prime if gcd(a, b) = 1.

Example 3. A few examples demonstrating the greatest common divisor:

If a = 3 and b = 4, then d = gcd(3, 4) = 1 (3 and 4 are relatively prime),

If a = 12 and b = 15, then d = gcd(12, 15) = 3,

If a = 25 and b = 55, then d = gcd(25, 55) = 5.

b. Least Common Multiple

Definition 15. Let a and b be positive integers. The integer m is called the least

common multiple of a and b, denoted by lcm(a, b), if and only if

1. m > 0,

2. a|m and b|m, and

3. if n is such that a|n and b|n, then m|n.

The least common multiple can be expressed as

lcm(a, b) =
ab

gcd(a, b)
. (2.38)

Example 4. A few examples demonstrating the least common multiple:

If a = 3 and b = 4, then m = lcm(3, 4) = 12,

If a = 12 and b = 15, then m = lcm(12, 15) = 60,

If a = 25 and b = 55, then m = lcm(25, 55) = 275.
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Also note that the least common multiple is associative and therefore,

lcm(a, b, c) = lcm(lcm(a, b), c) = lcm(a, lcm(b, c). (2.39)

3. Greatest Integer Function

The greatest integer function, often called the floor function, is defined as

follows.

Definition 16. For any x ∈ R, the greatest integer function evaluated at x returns

the largest integer less than or equal to x. This is sometimes referred to as the integral

part of x. The function will be denoted as 
x�.

Example 5. The following examples illustrate this definition,


2.7� = 2,


0.9� = 0,


−0.3� = −1.

Note that the floor function satisfies the following identity


x + k� = 
x�+ k, for k ∈ Z. (2.40)

4. Congruence

If a is fixed in (2.37), then there are an infinite number of choices of b for which

the remainder r is the same. In this context, a is called the modulus, the choices of b

are said to be congruent modulo a, and the remainder is called the common residue

modulo a or simply the common residue [Ref. 58]. This concept of congruence is

formalized with the following definitions.

Definition 17. Let n be a positive integer. The integers x and y are “congruent

modulo n” or “x is congruent to y modulo n”, denoted x ≡ y (mod n), provided that

x− y is divisible by n. If x and y are not congruent modulo n or x is not congruent

to y modulo n, we write x �≡ y (mod n).
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Example 6. We demonstrate the concept of congruence with a few examples.

8 ≡ 5 (mod 3),

14 ≡ 2 (mod 12),

49 ≡ 42 (mod 7).

Example 7. In the following example, n = 2, and there are two sets of integers that

are congruent modulo 2, the even integers and the odd integers.

{. . . ,−4,−2, 0, 2, 4, . . .} are congruent to 0 (mod 2),

{. . . ,−3,−1, 1, 3, 5, . . .} are congruent to 1 (mod 2).

Example 8. In this example, n = 3, and there are three sets of integers that are

congruent modulo 2.

{. . . ,−6,−3, 0, 3, 6, . . .} are congruent to 0 (mod 3),

{. . . ,−5,−2, 1, 4, 7, . . .} are congruent to 1 (mod 3),

{. . . ,−4,−1, 2, 5, 8, . . .} are congruent to 2 (mod 3).

Definition 18. If x ≡ y (mod n), then y is called a residue of x modulo n. Further-

more, if 0 ≤ y < n, then y is called the common residue of x modulo n, or simply the

common residue.

Example 9. Referring to Example 6, we point out the associated residues.

5 is a residue of 8 modulo 3,

2 is the common residue of 14 modulo 12, and

42 is a residue of 49 modulo 7.

Definition 19. The set of integers Λn = {0, 1, . . . , n − 1} is called the set of “least

positive residues modulo n”

At times, it is necessary to extract the common residue [Ref. 58]. This oper-

ation is denoted by 〈·〉n and is defined as

y = 〈x〉n = x−
⌊

x

n

⌋
n, (2.41)

where y is the common residue of x modulo n, and 
·� is the floor operation.
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Example 10. A few examples of extracting the common residues of x modulo n.

y = 〈22〉3 = 22−
⌊

22
3

⌋
3 = 22− 21 = 1,

y = 〈14〉4 = 14−
⌊

14
4

⌋
4 = 14− 12 = 2.

E. CHAPTER SUMMARY

This chapter introduces various fundamental signal processing and mathemati-

cal concepts required for theoretic and application-related developments in subsequent

chapters. Further, for the purposes of consistency, accuracy and ease of understand-

ing, conventions and notation are also established.

The taxonomy of signals and sequences, their various definitions, and associ-

ated notations are presented. Of particular relevance is the discussion on discrete-

domain signals and their sequence representation, which form the most basic con-

stituent of any multirate system (Chapter III).

Many concepts from linear algebra are recalled, including the concept of a

random vector and the reversal of a vector or matrix. Further, the linear algebraic

concept of the Kronecker product is discussed, which is useful in the matrix represen-

tation of various multirate operations in Chapter III and the multirate Wiener-Hopf

equations in Chapter IV. Finally, the Frobenius inner product is introduced, which

provides a compact representation of the two-dimensional linear estimate required for

image reconstruction (Chapter V).

In the analysis of random processes, the second-moment properties are fre-

quently used. Since they are essential to the development of optimal estimation

theory, the analysis and various definitions and relationships are reviewed in this

chapter.
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Finally, several topics in number theory are presented, which have great utility

in developing the theory of multirate systems and characterizing the relationships

between constituent signals and the related multirate system (Chapter III).
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III. MULTIRATE SYSTEMS: CONCEPTS AND

THEORY

In this chapter, we develop the theory of multirate systems, which establishes

the fundamental relationships in a multirate system, and culminates in a systematic

framework for their analysis. These results lead to representation of the various

signals in a multirate system on a common domain, system and impulse response

formulations at both the signal- and system-level, linear algebraic representation of

multirate operations, and ultimately, as presented in Chapter IV, development of

multirate signal estimation theory.

A. INTRODUCTION

In many digital signal processing (DSP) applications, the systems involved

must accommodate discrete-domain signals that are not all at the same sampling

rate. For instance, consider a system in which the signals at the source and desti-

nation have different sampling rate requirements. An example of this occurs when

recording music from a compact disc (CD) system at 44.1 kHz to a digital audio tape

(DAT) system at 48 kHz. Another application might involve systems that incorporate

several signals collected at different sampling rates. Sensor networks, many military

weapon and surveillance systems, and various controllers process data from various

sensors, where the information from each sensor might be collected at a different rate.
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Further, a system may be at a rate that is inefficient, and sampling rate conversion

may be required to reduce the rate of the system because “oversampling” is wasteful

in terms of processing, storage and bandwidth.

B. MULTIRATE SYSTEMS

The various ideas described in this chapter follow [Ref. 3, 59]; however, many

important extensions are made to align results with the theory of multirate systems as

developed here. A multirate system will be defined as any system involving discrete-

domain signals at different rates. Recall from Chapter II that we will use sequence

notation (i.e., x[n]) and different index values (n, m, etc.) to denote discrete-domain

signals at different rates. Figure 3.1 depicts a notional multirate system where the

input, output and internal signals are at different rates. A specific example of a mul-

Inputs Outputs

Internal Signals

K [ ]uh m

LTI

[ ]ee m
[ ]uu m

LPTV( )[ ]k
eh m

11[ ]yy m

22[ ]yy m
22[ ]xx m

11[ ]xx m

Figure 3.1. Notional multirate system where input, output, and internal signals are
at different rates. (From [Ref. 3]).

tirate system is the subband coder illustrated in Figure 3.2. The signals x[n] and y[n]

at the input and output of the system are at the original sampling rate while some of

the internal signals (y1[m1] and y2[m2]) are at lower rates produced through filtering

and decimation.
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x[n] y1[m1]

H2(z) ∞L2

y2[m2]

G1(z)

G2(z)

ÆL1

ÆL2

Coding

Coding

y[n]z1[n]

z2[n]

Figure 3.2. Simple subband coding system.

1. Intrinsic and Derived Rate

The notion of rate was introduced in Chapter II and is part of the description

of any discrete-domain signal. The rate associated with a particular signal may be

a result of sampling an analog signal or a result of operations on sequences in the

system. These issues are discussed below.

a. Intrinsic Rate

A discrete-domain signal may be derived from an analog signal by pe-

riodic or uniform sampling described by

x[n] = x(nTx) = x(t)|t=nTx n ∈ Z. (3.1)

Here, x[n] is the discrete-domain sequence obtained by sampling the analog signal

x(t) every Tx seconds. This concept is depicted in Figure 3.3.

( )x t

xT

[ ] ( )xx n x nT=

Figure 3.3. An analog signal sampled with a sampling interval of Tx.
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The sampling interval Tx and its reciprocal, the sampling rate Fx, are related by

Fx =
1

Tx
. (3.2)

In this context, we say x[n] is at a rate Fx. The rate associated with the sequence,

therefore, is the rate at which its underlying analog signal was sampled and is referred

to as its intrinsic rate.

b. Derived Rate

The process of sampling rate conversion provides another context in

considering the notion of rate or sampling rate in multirate systems. The two basic

operations in sampling rate conversion are downsampling and upsampling (with ap-

propriate filtering). These operations are depicted by the blocks shown in Figure 3.4,

and they are mathematically represented by

y[n] = x[Mn], (3.3)

where n is an integer, in the case of downsampling, and

y[n] =

⎧⎪⎨
⎪⎩

x
[

n
L

]
, if n|L ;

0, otherwise,

(3.4)

in the case of upsampling. Figures 3.5 and 3.6 graphically depict the downsampling

and upsampling operation, respectively, for M = L = 2.

[ ]v k
L

M
[ ]y m

[ ]u j

[ ]x n

Figure 3.4. Basic operations in multirate signal processing, downsampling and up-
sampling.
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M=2

0 1 2-1-2 n
x[n]

0 1-1 n
y[n]

Figure 3.5. An example of the downsampling operation (3.3), M = 2.

L=2

0 1 2

2

-1-2

-2

n
x[n]

0 1-1
n

y[n]

Figure 3.6. An example of the upsampling operation (3.4), L = 2.
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Note that both operations are performed exclusively in the digital domain. The

resulting signals have no intrinsic rate, but the rate is derived from the rate of the

input signal. For downsampling, the output rate Fy is given by

Fy =
Fx

M
, (3.5)

while for upsampling the rate is given by

Fy = LFx. (3.6)

The parameter M in downsampling is called the decimation factor while the parame-

ter L may be called the upsampling factor. Thus, downsampling results in a reduction

of sampling rate by a factor of M , and upsampling results in an increase in sampling

rate by a factor of L.

It will be seen later that other operations more general than downsam-

pling and upsampling can result in rate changes. These more general operations will

be represented by linear periodically-varying filters (see Section III.D.2). The out-

puts of these filters have no intrinsic rate but have a derived rate associated with the

operation that is performed.

C. CHARACTERIZATION OF MULTIRATE SYSTEMS

In the discussion of multirate system concepts and associated theory, it is

necessary to further develop terminology, characterize such systems and develop a

conceptual framework by which further analysis and extension can be based. In this

section, the concepts and terms are introduced.

1. System Rate

Consider a multirate system with just two signals at different sampling rates,

x1 and x2. Although it is not strictly necessary, the discussion can be more easily

motivated if it is assumed that each signal is derived by sampling an underlying analog
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signal as shown in Figure 3.7. It will be assumed that the sampling rates F1 and F2

are integer-valued. While the treatment could be generalized to the case where the

rates are rational numbers, the assumption of integer-values simplifies the discussion

and is quite realistic for practical systems. The corresponding discrete-domain signals

1F

2F

1( )x t

2( )x t
2 2 2( ) [ ]Tx t x m↔

1 1 1( ) [ ]Tx t x m↔

Figure 3.7. Two signals sampled at different sampling rates.

xT1 and xT2 at the output of the samplers are defined at points on their respective

domains

ΨT1 = {nT1 ; n ∈ Z}, (3.7)

and

ΨT2 = {nT2 ; n ∈ Z}, (3.8)

where T1 =
1

F1

and T2 =
1

F2

. The discrete-domain signals are represented in Figure

3.8 as sequences with different index values x[n1] and x[n2] indicating the different

sampling rates. Note that there is some common domain

ΨT = {nT ; n ∈ Z}, (3.9)

with some maximum sampling interval T in which the samples of both x1 and x2 can

be represented. In other words, ΨT1 ⊂ ΨT and ΨT2 ⊂ ΨT .

The sampling interval T in (3.9) will be called the system sampling interval or clock

interval. We can state the following theorem.
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t

T

1T

2T

1( )x t

2 ( )x t

Figure 3.8. Two signals sampled at different integer-valued sampling rates. A periodic
correspondence between indices can be observed (as indicated by the dashed lines).
The system grid is represented by the line segment at the bottom of the figure and
is derived from the set of hidden and observed samples of the associated underlying
analog signals. Open circles represent “hidden” samples.

Theorem 2. The system sampling interval is given by T =
1

F
, where F is a positive

integer, and

F = lcm(F1, F2). (3.10)

Here, F is called the system rate or the fundamental rate.

Proof. From the definition of the least common multiple (Definition 15):

1. By definition, F must be a positive integer;

2. ΨT1 ⊂ ΨT =⇒ F1|F , ΨT2 ⊂ ΨT =⇒ F2|F ;

3. Since T is the maximum sampling interval in which samples of both x1 and

x2 can be represented in ΨT , this implies that F =
1

T
is the related minimum

sampling rate, and the third condition of Definition 15 is met.
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We also define a system grid as the representation of the set ΨT on the real line,

as seen in Figure 3.8. Note that the samples of a signal corresponding to the system

grid can be viewed as a set of hidden and observed samples of the underlying analog

signal. For example, for a given signal x1, the observed samples are the samples of

x1(t) that correspond to the set ΨT1 defined in (3.7) while the hidden samples of x1

are the samples of x1(t) that correspond to the set ΨT −ΨT1
1.

It is frequently useful to represent all signals at the “system level” defined

by T and F . The system level is referred to as the “fundamental layer ” in [Ref.

59]. Sequences associated with the system level will be denoted by a symbol with an

overbar, as in x1[n] and x2[n] and a common index n. This point is developed further

in Section III.C.5.

For a multirate system comprised of M signals, the definition (3.10) can be

extended (see (2.39)) as

F = lcm(F1, F2, . . . , FM), (3.11)

with T =
1

F
.

2. Decimation Factor

Recall, from Section II.D.2(b), that the least common multiple m is a number,

which is a multiple of both associated integers a and b, therefore, a|m and b|m.

Further, from Definition 13, the condition a|m implies that m = c1a, and likewise

b|m implies that m = c2b, where c1 and c2 are constants.

We can apply these results to multirate systems. Since F is the least common

multiple of F1 and F2, it follows that there exists integer constants K1 and K2 such

that

F = K1F1 and F = K2F2. (3.12)

1The “difference” A−B of two sets A and B, where B ⊂ A, is defined as A−B = {x ∈ A|x /∈ B}.
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Rearranging Equation (3.12) yields an expression for these constants as

K1 =
F

F1
and K2 =

F

F2
. (3.13)

Further, for a multirate system comprised of M signals, (3.13) can be extended as

Ki =
F

Fi
where i = 1, . . . , M. (3.14)

Notice that if (3.14) is rearranged to the form of (3.5):

Fi =
F

Ki
,

we explicity see that the system sampling rate F is reduced by a factor of Ki. There-

fore, Ki is defined as the system decimation factor, or simply the decimation factor,

for the ith signal.

As a consequence, the following observation can be made and extended to

any number of signals. If the underlying analog signals x1 and x2 are sampled at

the system rate F and then are decimated by their respective decimation factors K1

and K2, the resultant discrete-domain signals are the signals obtained by sampling

x1 and x2 at the original rates F1 and F2, respectively (see Figure 3.9). In terms of

the hidden and observed samples of x1 and x2, the decimation factors offer a way to

relate the set of observed samples to the set of all samples (hidden and observed) at

the system level.

If (3.14) is expressed in terms of sampling intervals, we have

Ki =
Ti

T
, (3.15)

where the decimation factor is the ratio of the duration of the ith signal’s sample

interval to the duration of its associated clock interval. Thus, the decimation factor

Ki can also be viewed as the number of clock intervals or system samples between

samples of the ith signal when sampled at Fi.

3. System Period

Again, consider a multirate system comprised of two signals x1 and x2 sampled

at integer-valued sampling rates F1 and F2, respectively. If samples of these signals

46



xK

yK

( ) [ ]Tx t x n↔

( ) [ ]Ty t y n↔( )y t

( )x t [ ]xx m

[ ]yy m

F

F

Figure 3.9. Signals sampled at the system rate and decimated by their respective
decimation factors yield the original discrete-domain signals.

align on the related system grid at some time t = t0, then their samples realign

at some later time t = t1 = t0 + T and at regular intervals thereafter (see Figure

3.10). The smallest positive value of T for which the realignment occurs is called

the system period (not to be confused with the system sampling interval T ).Notice

that T = t1 − t0 and if t1 and t0 are expressed in terms of their discrete-domain

representations, we can write T = (n1 − n0)T ; thus, we define

N ≡ n1 − n0,

which is called the discrete system period. Observe that N represents the number

of system samples between sample realignments. It relates to the system period (in

seconds) as

T = NT . (3.16)

Now, we define Mi to be the number of signal samples per period. Therefore,

we relate M1 and M2 to the discrete system period by M1T1 = NT = M2T2. Recalling

(3.14), we write

N = M1K1 = M2K2, (3.17)

and recalling Definition (II.G.b.15), we can write

N = lcm(K1, K2), (3.18)
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Figure 3.10. Two signals sampled at different integer-valued sampling rates. Observe
the periodic alignment between indices, (After [Ref. 3]).

an explicit expression for the discrete system period. Also notice from (3.17) that

M1 =
N

K1
and M2 =

N

K2
. (3.19)

For a multirate system comprised of M signals, the definition of (3.18) can be

extended (see (2.39)) as

N = lcm(K1, K2, . . . , KM). (3.20)

4. Maximally-decimated Signal Set

Consider a discrete-domain signal y[n] at rate Fy. If y[n] is downsampled by

a factor of M , after M − 1 successive translations, a set of related discrete-domain

signals results, designated {x0[m], x1[m], . . . , xM−1[m]}. Note that the constituent

discrete-domain signals are at rate Fx =
Fy

M
. An example is shown in Figure 3.11 for

M = 3. If the discrete-domain signals associated with y[n] are described by

xi[m] = y[i + nM ] i = 0, 1, . . . , M − 1, (3.21)
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Figure 3.11. Example of a 3-fold maximally decimated signal set.

then the resultant signals will be called a maximally-decimated signal set with down-

sampling factor M or an M-fold maximally-decimated signal set.

5. Representation of Signals in Multirate Systems

In the analysis of multirate systems, there is a need to relate signals to a

common scale. This scale is represented by the system grid and is discussed in terms

of the ΨT domain, where T is the system sampling interval. The sample indices of a

signal sampled at the system rate correspond to the integer multiples of T . In this

context, every signal in a multirate system can be represented on the system grid.

Consider a multirate system, with a system sampling interval T , containing a

particular discrete-domain signal xTx, among others. This signal can be represented

by the sequence

x[mx] = xTx(mxTx),

where xTx is the discrete-domain signal and Tx is the associated sampling interval.

Note that the sequence and its sampling rate is defined by the discrete-domain signal

xTx(t) for t = mxTx and not by the analog signal x(t), which may not be directly
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observable or may not even exist! We refer to this as a signal-rate or signal level

representation of x and, in this case, say that x is at its native rate. Now define xT

to be the associated system-rate or system-level representation of x. This signal can

be represented by the sequence

x[n] = xT (nT ).

We can relate the two representations by recalling from (3.15) that Tx = TKx and

noting that

xTx(mxTx) = xTx(mxTKx) = xT (mxKxT ) = x[Kxmx].

Therefore, a discrete-domain signal at its native rate can be represented at the system

rate or system level by

x[mx] = x[Kxmx], (3.22)

where Kx is the decimation factor of signal x. These concepts are illustrated in

Figure 3.12 for a multirate system comprised of two signals x and y. The native rate

corresponds to a signal’s “original” sampling rate, and the system rate corresponds

to the system rate determined from (3.10).

6. Summary of Multirate Relationships

For convenience, the representations and relationships developed in this chap-

ter regarding multirate systems are summarized in the following tables. In Table

3.1, the various signal representations, their notations and their associated rates are

indicated.

x(t) Analog

x[n] System-level, system rate, F

x[mx] Signal-level, native rate, Fx

Table 3.1. Signal representations in multirate systems.
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Figure 3.12. Signal representations and sampling levels in a multirate system.

In Table 3.2, the characterization of and relationship between signals in multirate

systems is summarized.

Name Relationship

System Rate F = lcm(F1, F2, . . . , FM)

System Sampling Interval
1

F

Decimation Factor Ki =
F

Fi

=
Ti

T

System Sample Period N = lcm(K1, K2, . . . , KM )

Samples/Period Mi =
N

Ki

System Period T = NT = MiTi

Table 3.2. Summary of various relationships pertaining to a multirate system (M
signals).
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Finally, in Table 3.3, these characterizations and relationships are summarized in

relation to signal and system level representations.

Sampling
Rate

Sampling
Interval

Decimation
Factor

Samples
per Period

System
Period

Signal Fx Tx Kx Mx T = MxTx

System F T 1 N T = NT

Table 3.3. Parameters pertaining to a multirate system, (After [Ref. 3]).

D. MULTIRATE SYSTEM THEORY

1. Description of Systems

A signal processing system represents the process for transforming a signal

into another signal. The concept is illustrated in Figure 3.13(a), where a signal x(t)

is transformed into a signal y(t). The input and output may be of any of the signal or

sequence types discussed in Chapter II and need not be of the same type. For instance,

the input may be a discrete-domain signal and the output may be an analog signal.

Our primary concern, however, is the case where both the input and the output are

discrete-domain signals, not necessarily with the same sampling intervals.

Since discrete-domain signals are represented by sequences together with a

(known or implied) sampling rate, it is appropriate to consider the properties of

“systems” that transform sequences. These will be referred to as discrete systems

as shown in Figure 3.13(b), and the transformation will be represented by TD. In

addition to performing a specified operation on the input sequence, a discrete system

provides a means of determining the output sampling rate from the input sampling

rate. When input and output sampling rates are not the same, it is our convention

to use different letters for the index variable of the sequence.
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Figure 3.13. (a) Block-diagram representation of a signal processing system; (b)
Block-diagram representation of a discrete system.

In general, a discrete-domain system is represented by

y[m] = TD{x[n]} or TD{x[n]} ⇒ y[m], (3.23)

where TD is a suitable mathematical operator and x[n] and y[m] represent the input

and output sequences for such a system. Note that the sequences in general may be

at different rates.

2. Classification of Discrete Systems

Discrete systems can be classified by certain restrictions or characteristics

placed upon, or observed concerning them. A number of such classifications are impor-

tant in signal processing, including: linear/non-linear, time-invariant/time-variant,

causal/non-causal, stable/unstable, invertible/non-invertible systems, and systems
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with memory/without memory. In this section, we deal with the first three of these

classifications. Others are not so important to our discussion and conform to defini-

tions used in many text books [Ref. 60, 61].

a. Linearity

A discrete linear system is any system that satisfies the generalized

superposition principle. If the input to such a system consists of a weighted sum of

sequences, then its output consists of the weighted sum of the system responses to

each individual input sequence (superposition of responses). It is sufficient to define

linearity in terms of the system’s response to a weighted sum of two sequences.

Definition 20. Let x1[n] and x2[n] be two sequences at the same sampling rate. A

discrete system is linear if and only if

TD{α1x1[n] + α2x2[n]} = α1TD{x1[n]}+ α2TD{x2[n]}, (3.24)

for arbitrary input sequences x1[n]andx2[n] and constants α1andα2.

Note that, while the output of a linear system may be at a different

rate than the input, we make no attempt to define linearity in terms of two sequences

at different rates. Indeed, the sum of two sequences at different rates has no obvious

or unique intuitive meaning and is not necessary for our theory of multirate systems.

Any discrete system that does not satisfy Definition 20 is a nonlinear

discrete system (e.g., square law system defined by y[n] = (x[n])2). Time dependence

is not an issue. Both downsamplers and upsamplers (see Section III.B.1(b)) are linear

systems.

b. Shift-invariance

Systems can also be characterized by the variation in their input-output

characteristics as time evolves, and can be subdivided into shift-invariant and shift-

dependent systems (frequently called time-invariant and time-dependent).
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Definition 21. Let TD be a discrete system such that the input and output sequences

are at the same rate, i.e., TD{x[n]} ⇒ {y[n]}. Then the system is shift-invariant if

and only if

TD{x[n−N ]} ⇒ y[n−N ], for all integers N. (3.25)

If the system satisfies (3.25) only for a particular value N and integer

multiples thereof, the system is said to be periodic with period N . For systems with

different input and output rates, shift-invariance is not defined. Periodicity, however,

can be generalized to include these systems, as shown below.

c. Periodic Shift-invariance

For discrete systems with input and output signals at different rates,

i.e., TD{x[n]} ⇒ y[m], we define a particular type of shift-invariance called peri-

odic shift-invariance (PSI). A system that observes this property is called a discrete

periodically shift-invariant system. The definition of this property follows.

Definition 22. Let TD be a discrete system such that if TD{x[mx]} ⇒ {y[my]}, then

the system is periodically shift-invariant if there exists integers Mx and My such that

TD{x[mx −Mx]} ⇒ y[my −My]. (3.26)

Note that when the input and output are at the same rate, a periodic

system satisfies this definition with Mx = My and a shift-invariant system satisfies

this definition for all Mx such that Mx = My. The need for the more general definition

given in (3.26) will become clear further in our development.

d. Causality

In defining causality, it is important to know the rates or sampling

intervals of the sequences involved. In fact, as pointed out in [Ref. 62], “Causality is

intrinsically related to the ordering in time [or domain] of input and output signals

of [a] system.” Ordering is clear in a single-rate system as identical sample indices

in each associated sequence correspond to identical points in a common domain. In
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multirate systems, sequence sample indices must be referred back to their absolute

scales (i.e., the discrete-domain signal) to discuss ordering.

Definition 23. A discrete system TD is causal if and only if

y[my] depends only on x[mx − k] for k = {0, 1, . . . }, (3.27)

where mx =

⌊
Kymy

Kx

⌋
, and Kx, Ky are the associated decimation factors.

A system is noncausal if it does not satisfy this definition.

It can be seen that a discrete system is causal if and only if the discrete-

domain signal yTy(t) at t = myTy depends only on values of the discrete-domain input

signal xTx(t) for t = mxTx ≤ myTy. This set of input values is known as the region

of support of the system. The concept of causality is illustrated in Figure 3.14. The

discrete multirate system depicted has a discrete-domain input signal represented by

the sequence x[mx] and an output signal represented by the sequence y[my]. For a

given index in the output sequence my0 , Definition 23 requires that mx0 ≤
⌊

Kymy0

Kx

⌋
for causality.

{}D ⋅�

[ ]xx m [ ]yy m

xm[ ]xx m

ym[ ]yy m

Causal region
of support

0ym

0xm

0 0x x y ym T m T≤

Causality condition

0

0

y y
x

x

K m
m

K
⎢ ⎥

≤ ⎢ ⎥
⎣ ⎦

Figure 3.14. Concept of causality in a discrete multirate system comprised of a
discrete-domain input signal x[mx] and output signal y[my].
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3. Representation of Discrete Linear Systems

Given a discrete linear system with input x[m] and output y[n], with, possibly,

different sampling rates, the input-output relation or system response can be written

as

y[n] =
∞∑

m=−∞
g[n, m]x[m]. (3.28)

The term g[n, m], called the kernel or Green’s function, is the response of the system

at point n in the output sequence to a unit impulse2 applied at point m in the input

sequence. This formulation is a discrete-domain version of the continuous model in

[Ref. 63, 64, 62], and the corresponding kernel has been referred to as the Green’s

function weighting pattern response [Ref. 65].

a. Single-rate Systems

When the input and output rates are the same, (3.28) can be written

as

y[n] =

∞∑
m=−∞

h[n; m]x[n−m], (3.29)

where

h[n; m] = g[n, n−m], (3.30)

is called the shift-dependent impulse response. The system is causal (see Section III.D.2(d))

if

h[n; m] = 0 for m < 0. (3.31)

The system is periodic (see Definition 21) if there exists N such that

h[n; m] = h[n + N ; m] for all n. (3.32)

2The unit impulse, also know as the Kronecker delta function, is defined as

δ[n] =

{
1, n = 0;
0, n �= 0.
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If in addition, the system is shift-invariant (see Definition 21), then the

impulse response is necessarily independent of the first argument (n) and the output

can be written as the familiar convolution summation

y[n] =
∞∑

m=−∞
h[m]x[n−m] =

∞∑
m=−∞

h[n−m]x[m]. (3.33)

The system represented in (3.33) is commonly referred to as a filter because of its

interpretation in the Fourier domain, although the term “filter” is often used to

apply to any system; linear or nonlinear, shift-variant or shift-invariant, in the signal

processing literature. A filter is said to be a finite impulse response (FIR) filter (or

system) if the sequence h[n] has finite support and an infinite impulse response (IIR)

filter (or system), otherwise. The region of support or the support of a given sequence

is the set of values over which the sequence is non-zero [Ref. 66].

b. Multirate Systems

In developing results for multirate systems, it is convenient to first

describe the multirate system at the “system level” discussed in Section III.C.5 of

this chapter. When represented at the system level, we can apply known results from

the analysis of single-rate systems to the multirate system and then express those

results at the signal level pertaining to the signals of interest.

(1) System-level Representation Recall the system response

equation (3.28)

y[my] =
∑
mx

g[my, mx]x[mx], (3.34)

where y and x are at different rates represented by my and mx, respectively. Also,

recall (3.22) that a discrete-domain signal xTx(t) can be represented at the system

level

x[mx] = x[Kxm].

Now define g, the system kernel or system Green’s function, such that

g[my, mx] = g[Kymy, Kxmx],

58



where Kx and Ky are the decimation factors for x and y, respectively. At other values

of it arguments, g is defined to be 0. Now, (3.34) can be written as

y[Kymy] =
∑
mx

g[Kymy, Kxmx] x[Kxmx]. (3.35)

If g satisfies Definition 22 for periodic shift-invariance, then a necessary

and sufficient condition is that

g[Kymy, Kxmx] = g[Ky(my + My), Kx(mx + Mx)].

where Mx and My are the number of samples per system period for x and y, respec-

tively. Then

g[Ky(my + My), Kx(mx + Mx)] = g[Kymy + N, Kxmx + N ] (3.36)

where we recall (3.17) that the system sample period is given by N = KyMy = KxMx;

therefore, g has period N in both arguments.

Now, we define

h[Kymy; Kxmx] ≡ g[Kymy, Kymy −Kxmx], (3.37)

or, equivalently,

g[Kymy; Kxmx] ≡ h[Kymy, Kymy −Kxmx],

where h is called the system impulse response. Notice that since g satisfies (3.36),

then

h[n; l] = g[n, n− l] = g[n + N, n− l + N ] = h[n + N ; l],

thus h[n; l] is periodic in its first argument only. Note, also, that if the system is

causal, then h[n; l] must be 0 for l < 0. Now we can write

g[Kymy; Kxmx] = h[Kymy + N ; Kymy −Kxmx], (3.38)

where N is the system sample period.
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Now, (3.35) can be written as

y[Kymy] =
∑
mx

h[Kymy; Kymy −Kxmx] x[Kxmx]. (3.39)

Since h is periodic in N , we can define

h
(p)

[l] ≡ h[n; l] where p = 〈n〉N , (3.40)

and N is the system sample period. Substituting into (3.39) yields the general filter

equation

y[n] =

⎧⎪⎪⎨
⎪⎪⎩
∑
mx

h
(p)

[n−Kxmx] x[Kxmx], Ky|n,

undefined, otherwise

(3.41)

where p = 〈n〉N .

If we desire a causal filter (see Section III.D.2(d)), then

mxTx ≤ myTy or mx ≤ Kymy

Kx
, (3.42)

and

y[n] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�Kymy
Kx

�∑
mx=−∞

h
(p)

[n−Kxmx] x[Kxmx], Ky|n,

undefined, otherwise

(3.43)

where p = 〈n〉N . The upper limit on the sum is insured if h
(p)

[l] = 0 for l < 0. Notice

that when Tx = Ty → Kx = Ky (single-rate system), (3.41) and (3.43) simplify to the

expected convolution sums.

Example 11. Consider Figure 3.15, where two signals are represented on their as-

sociated grids. The upper grid (a) represents a signal y that has an associated dec-

imation factor Ky = 3, and the lower grid (b) represents a signal x that has an

associated decimation factor Kx = 2. Recall (3.18) that the system period is given by

N = lcm(Kx, Ky); therefore, N = 6.
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2yM =

3xM =

6N =

3yK =

2xK =

Figure 3.15. (a) Discrete-time signal y[n] with decimation factor Ky = 3; (b)
Discrete-time signal x[n] with decimation factor Kx = 2; (c) System grid.

If we desire the estimate for y at my = 4, using a causal filter, where

the filter order P = 3, then we can write (3.43) as

y[12] =

� 12
2
�=6∑

mx=3

h
(0)

[12− 2mx] x[2mx], where p = 〈12〉6 = 0.

therefore

y[12] = h
(0)

[4]x[8] + h
(0)

[2]x[10] + h
(0)

[0] x[12].

Notice that the linear combination is in terms of the system-rate parameters (n is the

system time index). Once y[12] is computed, recall that y[my] = y[myKy]; therefore,

y[4] = y[12].
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If we desire the estimate for y at my = 5,

y[15] =

� 15
2
�=7∑

mx=5

h
(3)

[15− 2mx]x[2mx], where p = 〈15〉6 = 3.

therefore

y[15] = h
(3)

[5]x[10] + h
(3)

[3]x[12] + h
(3)

[1]x[14].

(2) Signal-level Representation Often, it is desirable or more

convenient to deal in terms of the actual signal parameters rather than system pa-

rameters; therefore, we develop (3.41) and (3.43) in terms of the individual signal

parameters. To do so, we introduce the following substitutions and change of vari-

ables.

First let us examine the system impulse response h,

h
(p)

[Kymy −Kxmx] = h[Kymy + N ; Kymy −Kxmx].

Consider the first argument, where Ky has been factored out and we recall (3.17)

Kymy + N = Ky(my + N/Ky) = Ky(my + My).

Since this argument is periodic,

Ky(my + N/Ky)↔ Ky〈my〉My
.

Now, consider the second argument, where Kx has been factored out

Kymy −Kxmx = Kx

(
Kymy

Kx

−mx

)
.

Recalling that

y[my] = y[myKy], x[mx] = x[mxKx],

and

h[Kymy; Kxmx] = h[my; mx],
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we can write the impulse response as

h(l)

[⌊
Kymy

Kx

⌋
−mx

]
, where l = 〈my〉My

,

and we can write

y[my] =
∑
mx

h(l)

[⌊
Kymy

Kx

⌋
−mx

]
x[mx], where l = 〈my〉My

.

If we introduce the following change of variables

k =

⌊
Kymy

Kx

⌋
−mx, (3.44)

we can write the general signal-rate filtering equation as

y[my] =
∑
mx

h(l)[mx]x

[⌊
Kymy

Kx

⌋
−mx

]
, where l = 〈my〉My

. (3.45)

and the signal-rate causal filtering equation as

y[my] =
∞∑

mx=0

h(l)[mx]x

[⌊
Kymy

Kx

⌋
−mx

]
, where l = 〈my〉My

. (3.46)

The lower limit (mx = 0) on the summation is equivalent to the causal condition

h(l)[mx] = 0 for mx < 0. Notice that My, the number of signal samples (y) per

system period, is the period of the filters required to form y[my], referred to as the

cyclostationary period in [Ref. 9]. Additionally, note that when Tx = Ty, then

Kx = Ky and (3.45) and (3.46) simplify to the expected convolution sums for a

single-rate system.

Example 12. Let us illustrate with the same example previously discussed and illus-

trated in Figure 3.15. Recall that signals y and x have associated decimation factors

Ky = 3 and Kx = 2, respectively, and that the system period N = 6. Further, recall

that My =
N

Ky
=

6

3
= 2.
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If we desire the estimate for y at my = 4, using a causal FIR filter,

where the filter order P = 3, then we can write (3.45) as

y[4] =
2∑

mx=0

h(0)[mx]x[6−mx], where l = 〈4〉2 = 0,

therefore

y[4] = h(0)[0]x[6] + h(0)[1]x[5] + h(0)[2]x[4].

If we desire the estimate for y at my = 5,

y[5] =
2∑

mx=0

h(1)[mx]x[7−mx], where l = 〈5〉2 = 1,

therefore

y[5] = h(1)[0]x[7] + h(1)[1]x[6] + h(1)[2]x[5].

E. MATRIX REPRESENTATION

In the analysis of multirate systems, linear algebra concepts provide a useful

framework to represent or model basic multirate operations, such as downsampling,

upsampling and linear filtering. This section develops a systematic methodology,

which is used in other sections to further represent multirate systems, an extension

of work presented by [Ref. 67].

1. Decimation

Decimation is the process of digitally reducing the sampling rate of a signal

[Ref. 65], and the basic element used in digital systems is the downsampler or dec-

imator, shown in Figure 3.16. This element extracts every M th sample of its input

and, as a result, decreases the sampling rate by 1
M

. Its operation can be expressed

mathematically as

y[n] = x[Mn] (3.47)
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M
[ ]x n [ ]y n

Figure 3.16. M-fold downsampler.

where n is an integer.

If the input and output signals are represented as vectors, then this operation

can be expressed as a linear transformation of the form

y = T{M, N,x} (3.48)

where T{·} represents an arbitrary linear operator that is dependent on the decimation

factor M and the order of its associated vectors. If the downsampler takes input vector

x ∈ RNM where

x = [ x[0] x[1] . . . x[M ] x[M + 1] . . . x[NM − 1] ]T

and produces an output vector y ∈ RN where

y = [ x[0] x[M ] x[2M ] . . . x[(N − 1)M ] ]T ,

then the operator can be expressed as

T = DM , (3.49)

and the transformation can be written as

y = DMx. (3.50)

The constant matrix DM ∈ RN×NM is called a decimation matrix and is defined in

terms of a Kronecker product (introduced in Section II.B.2) as

DM = I⊗ ιT (3.51)

where I is the N ×N identity matrix and ιk is an M × 1 index vector with a 1 in the

first position and 0’s elsewhere.
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As an example, consider the case where M = 3 and x ∈ R12. The decimation

matrix D3 ∈ R4×12 is given by

D3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

which results in y ∈ R4.

2. Expansion

Expansion and decimation are dual operations. Expansion is the process of

digitally increasing the sampling rate of a signal, and the basic element used is the

upsampler or expander, shown in Fig 3.17. This element inserts L−1 zeros after every

sample of the input and, as a result, increases the sampling rate by L. Mathematically

the process is described by

y[n] =

⎧⎪⎨
⎪⎩

x
[n

L

]
, if n is an integer multiple of L;

0, otherwise,

(3.52)

or

y[n] =

∞∑
k=−∞

x(k)δ(n− kL). (3.53)

L
[ ]x n [ ]y n

Figure 3.17. L-fold expander.

If the input and output signals are represented as vectors, then this operation

can be expressed as a linear transformation of the form

y = T{L, N,x} (3.54)
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where T{·} represents an arbitrary linear operator that is dependent on the upsam-

pling factor L and the order of its associated vectors. If the expander takes input

vector x ∈ RN where

x = [ x[0] x[1] . . . x[N − 1] ]T

and produces an output vector y ∈ R(NL) where

y =

⎡
⎣ x[0]

L−1︷ ︸︸ ︷
0 . . . 0 x[1]

L−1︷ ︸︸ ︷
0 . . . 0 x[2] . . . x[(N − 1)]

L−1︷ ︸︸ ︷
0 . . . 0

⎤
⎦T

then the operator can be expressed as

T = UL, (3.55)

and the transformation can be written as

y = ULx. (3.56)

The constant matrix UL ∈ RNL×N is called an expansion matrix and is defined in

terms of a Kronecker product as

UL = I⊗ ι (3.57)

where I is the N ×N identity matrix and ι is an L× 1 index vector with a 1 in the

first position and 0’s elsewhere.

As an example, consider the case where L = 3 and x ∈ R4. The expansion
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matrix U3 ∈ R12×4 is given by

U3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which results in y ∈ R12.

Notice that, if L = M , the expansion matrix is related to the decimation

matrix through matrix transposition as

DM = (UL)T for M = L; (3.58)

in other words, the operation of decimation and expansion are complementary pro-

cesses when M = L.

3. Sample Rate Conversion with Delay

In the analysis of various multirate implementations, notably those involving

polyphase decompositions (efficient implementations) [Ref. 68], signal delay must be

incorporated in the system model and forms another basic building block of multirate

systems as shown in Figure 3.18. In discrete systems, a signal delay3 is simply a shift

3Despite the name, there is no restriction in considering advancement in sample index. This will
be clear by the sign associated with the delay.
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of the associated sequence to the right or left by some integer number of samples M

and is represented by the usual

x[n−M ]←→ z−M

and

x[n + M ]←→ z+M

where z−M indicates a delay or shift to the right, and z+M indicates a negative delay

or shift to the left.

In conjunction with signal delay, the sample rate conversion transformations

of (3.50) and (3.56) can be generalized. Given a delay k ∈ {0, 1, . . . , M − 1}, then

y = D
(k)
M x. (3.59)

The constant matrix D
(k)
M ∈ RN×NM is called an decimation matrix with delay and is

defined in terms of a Kronecker product as

D
(k)
M = I⊗ ιT

k (3.60)

where I is the N ×N identity matrix and ιk is an M × 1 index vector with a 1 in the

(k + 1)th position and 0’s elsewhere.

z -1

M
[ ]x n [ ]y n

Figure 3.18. M-fold decimator with delay.

In a similar manner,

y = U
(k)
L x. (3.61)

The constant matrix U
(k)
L ∈ RNL×N is called an expansion matrix with delay and is

defined in terms of a Kronecker product as

U
(k)
L = I⊗ ιk (3.62)
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where I is the N ×N identity matrix and ιk is an L× 1 index vector with a 1 in the

(k + 1)th position and 0’s elsewhere.

Consideration of (3.60) and (3.62) shows the duality of the two operators, for

M = L, and results in the general expression

U
(k)
M = (D

(k)
M )T = I⊗ ιk for k ∈ {0, 1, . . . , M − 1}. (3.63)

4. Linear Filtering

It is also useful to provide a matrix representation of linear filtering. Recall

from (3.33) that a P length causal FIR filter is fully specified by its P filter coefficients

(impulse response). If we denote these coefficients h ∈ RP as

hP = [ h[0] h[1] . . . h[P − 1] ]T

and the related input data sequence xP [n] ∈ RP as

xP [n] = [ x[n− P + 1] . . . x[n− 1] x[n] ]T ,

then the output of the filter at index n, y[n] ∈ R can be represented by

y[n] = hT
P x̃P [n] = h̃T

PxP [n]. (3.64)

F. CHAPTER SUMMARY

This chapter establishes the theory of multirate systems and provides the foun-

dation upon which the remainder of this work is built. The concept of a multirate

system is introduced, with various practical examples. A multirate system is formally

defined, the notion of rate is discussed, and the basic multirate operations of down-

sampling and upsampling are introduced. A conceptual framework for the analysis

of multirate systems is developed, which enables a systematic extension of optimal

estimation and linear filtering theory to multirate systems. The characterizations of
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constituent multirate signals introduced include system rate, decimation factor, sys-

tem period, and maximally-decimated signal sets. Further, this chapter introduces

the concept of a system grid, which allows representation of the various signals in a

multirate system on a common domain.

The system theory of multirate systems is also developed, including the con-

cepts of linearity, shift-invariance, period shift-invariance, and causality. In addition,

the input-output relation of a multirate system is discussed in terms of the system re-

sponse and its associated Green’s function and is adapted to the multirate problem in

both system-level and signal-level representations. Further, the relationship between

linear periodically time-varying filters and their linear time-invariant equivalents is

discussed.

Finally, the basic multirate operations are analyzed from a linear algebraic

point of view, and matrix representations for the operations of downsampling, up-

sampling, sample rate conversion and linear filtering are presented.
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IV. MULTIRATE OPTIMAL ESTIMATION

Signal or image reconstruction can be viewed as a problem in signal estima-

tion, where a related low-rate (low-resolution) signal or signals is used to estimate

an underlying high-rate (high-resolution) signal. From this perspective, the observa-

tion signal or signals, and desired signal form a multirate system and the theory of

multirate systems developed in Chapter III can be used to extend single-rate signal

estimation theory to the multirate case, which is the concern of this chapter.

A. SIGNAL ESTIMATION

“Estimation is the process of inferring the value of a quantity of interest from

[typically] indirect, inaccurate, and uncertain observations [Ref. 69].” A pictorial

representation of this concept is depicted in Figure 4.1, where the source d represents

some quantity of interest (unknown parameter, random variable, random process,

etc.), x are the observations, related to d, and d̂(x) is the estimate. Note that, since

x and sometimes d are considered to be random variables, d̂, which is a function

of the observations, is also a random variable. In the field of signal processing,

these quantities of interest are signals, and a major emphasis of research is on signal

estimation, where one signal is estimated from some other related signal or signals.

The desired signal may be corrupted by distortion or interference and is usually

unobservable (at least at the moment when the estimate is desired). In [Ref. 70], a

number of typical signal estimation applications are presented including: the recovery

of a transmitted signal from a distorted received signal, subject to amplitude and

phase distortions and additive white noise over the communications channel; and

image restoration of an image recorded by an imaging system that introduces blurring,

nonlinear geometric distortions, and additive white noise.

73



Source Observations Estimate

xd ˆ( )d x

Figure 4.1. Concept of estimation.

B. OPTIMAL FILTERING

When the quantity of interest is a random signal, optimal filtering provides

a framework for signal estimation. Optimal filtering is an area of signal processing

study that is concerned with the design of filters to process a class of signals with

statistically similar characteristics [Ref. 5] that are “best” in some sense, in terms of

stated optimality criteria (i.e., minimum mean-squared error). The optimal filtering

problem is posed in the following manner. Suppose that a random process x[n] is

observed, which is related to another random process d[n] that cannot be observed

directly. A general expression for the estimate is

d̂[n] = φ[{x[n]}]. (4.1)

The optimal filtering problem is concerned with finding the appropriate functional

φ[·] that provides the best estimate of the desired signal d̂[n]. When φ[·] is linear,
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the functional is commonly referred to as a (linear) filter. This concept is depicted in

Figure 4.2.

d[n]
x[n]

d̂[n]Filter
( )φ ⋅

Figure 4.2. General single-rate optimal filtering problem. When φ[·] is linear, the
functional is commonly referred to as a linear filter.

Typically, these filters are constrained to be a linear function of the observa-

tions and hence can be written in the form (recall (3.28))

d̂[n] =
∞∑

m=−∞
g[n; m]x[m], (4.2)

where the sequence g[n; m], which may be finite or infinite, is the familiar Green’s

function. This class of optimal filtering is called optimal linear filtering.

Often, the optimality criterion is based on minimization of the mean-square

error (MSE) between the desired and estimated signals, i.e.,

σ2
ε [n] = E{|ε[n]|2}, (4.3)

where

ε[n] = d[n]− d̂[n] (4.4)

is the error in estimation at the nth sample. When coupled with this MSE optimal-

ity criterion, optimal linear filtering is commonly referred to as Wiener filtering in

recognition of the pioneering work of Norbert Wiener [Ref. 71, 72] in the 1940’s.1 Of

great significance is that only second-order statistics are required in determination

1Wiener’s pioneering work addressed the optimal filtering problem in continuous time, but is
easily translated to discrete time, as is common now. Kolmogorov, in Russia, worked on the discrete-
time problem for time series [Ref. 73] and appears to have preceded (or at least matched) Wiener
in formulating and solving the problem (for discrete time).
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of these optimal filters [Ref. 61]. Further, under the condition of joint wide-sense

stationarity (JWSS) between the input x[n] and the desired process d[n], the filter

is shift-invariant (see Section III.D.2(b)). For our purposes, we develop the general

discrete FIR Wiener filtering equations, then the filtering equation for JWSS observa-

tion and estimate signals. In order to facilitate such developments, the orthogonality

principle [Ref. 5] is stated.

1. Orthogonality Principle

Theorem 3 (Orthogonality Principle). Let ε[n] = x[n]− x̂[n] be the estimation

error. Then,

1. the optimal linear filter with coefficients h[0], h[1], . . . , h[P − 1] minimizes the

error variance σ2
ε if the filter coefficients are chosen such that E{ε[n]x∗[n−i]}=

E{x[n− i]ε∗[n]} = 0, i = 0, 1, . . . , P − 1, that is, if the error is orthogonal to

the observations.

2. The minimum error variance is given by σ2
εmin

= E{ε[n]d∗[n]} = E{d[n]ε∗[n]}.

The proof of this result can be found in several places [Ref. 5, 60, 74, 70].

2. Discrete Wiener Filter Equations

The equations whose solution provides the optimal filter are known as the

Wiener-Hopf equations. In developing the “ordinary” (single-channel/single-rate)

Wiener-Hopf equations, let us define the estimate in terms of a linear FIR filter that

operates on x[n] and the P − 1 previous values of the process. The estimate (from

(3.29)) is given by

d̂[n] =
P−1∑
m=0

h[n; m]x[n−m], (4.5)

where h[n; m] is the shift-dependent impulse response sequence of the optimal filter

and P is the associated filter order (length of the impulse response sequence). If

x[n− i] for i = 0, 1, . . . , P − 1 represents any one of the observations of the sequence
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x[n], then by applying the orthogonality principle (Theorem 3), we can write

E{ε[n]x∗[n− i]} = E

{(
d[n]−

P−1∑
m=0

h[n; m]x[n−m]

)
x∗[n− i]

}
= 0 (4.6)

or
P−1∑
m=0

Rx[n−m; i−m]h[n; m] = Rdx[n; i]; i = 0, 1, . . . , P − 1. (4.7)

This equation is the desired discrete Wiener-Hopf equation and can be written in

matrix form. For example, for P = 3, we have⎡
⎢⎢⎢⎣

Rx[n; 0] Rx[n− 1;−1] Rx[n− 2;−2]

Rx[n; 1] Rx[n− 1; 0] Rx[n− 2;−1]

Rx[n; 2] Rx[n− 1; 1] Rx[n− 2; 0]

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

h[n; 0]

h[n; 1]

h[n; 2]

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

Rdx[n; 0]

Rdx[n; 1]

Rdx[n; 2]

⎤
⎥⎥⎥⎦ . (4.8)

By applying the second part of the orthogonality principle, the expression for

the minimum mean-square error can be found as

σ2
εmin

[n] = E{ε[n]d∗[n]} = E

{(
d[n]−

P−1∑
m=0

h[n; m]x[n−m]

)
d∗[n]

}
(4.9)

or

σ2
εmin

[n] = Rd[n; 0]−
P−1∑
m=0

h[n; m]R∗
dx[n; m]. (4.10)

If the random processes are JWSS, then the statistical properties of the as-

sociated system do not change with n, the estimate can be generated by a linear

shift-invariant FIR filter, and the minimum mean-square error becomes constant.

The matrix form of the Wiener-Hopf equation (4.7) can be derived directly if

(4.5) is written in vector form,

d̂[n] = (x̃[n])Th, (4.11)

where

x[n] =

⎡
⎢⎢⎢⎢⎢⎢⎣

x[n− P + 1]

x[n− P ]
...

x[n]

⎤
⎥⎥⎥⎥⎥⎥⎦ , (4.12)
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with x̃[n] as defined in Section II.B.3, and

h =

⎡
⎢⎢⎢⎢⎢⎢⎣

h[0]

h[1]
...

h[P − 1]

⎤
⎥⎥⎥⎥⎥⎥⎦ , (4.13)

or in the general non-stationary case

h =

⎡
⎢⎢⎢⎢⎢⎢⎣

h[n; 0]

h[n; 1]
...

h[n; P − 1]

⎤
⎥⎥⎥⎥⎥⎥⎦ . (4.14)

Again, evoking the orthogonality principle, we can write

R̃∗
xh = r̃dx, (4.15)

where

Rx = E{x[n]x∗T [n]}, (4.16)

and

rdx = E{d[n](x[n])∗}. (4.17)

Equation (4.15) has the specific form (4.8) (for P = 3). The minimum mean-square

error can be written as

σ2
εmin

[n] = Rd[n; 0]− r̃T
dxh

∗. (4.18)

C. MULTIRATE OPTIMAL FILTERING

1. Single-channel, Multirate Estimation Problem

In the single-channel, multirate optimal filtering problem, the observation sig-

nal and the desired signal are at different rates and our goal is to form an estimate
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d[n]
x[m]

d̂[n]Filter
[ ]φ ⋅

Figure 4.3. General single-channel, multirate optimal filtering problem. Note that
the estimate and observation signals may be at different rates.

of the underlying desired signal from the observation signal. This notion is depicted

in Figure 4.3 where x[m] represents the observation signal at rate Fx, d[n] represents

the desired signal at some other rate Fd, and d̂[n] represents the estimate. A general

expression for the estimate is

d̂[n] = φ[{x[m]}], (4.19)

where the scalar estimate is a function of the sequence x[m]. Again, we seek the

appropriate functional that provides the best estimate of d̂[n]. When φ[·] is linear,

the functional is, again, referred to as a linear filter.

In this work, we have developed two approaches to formulating the required

estimate. The first approach is based on a causal FIR Wiener filtering model, the

second on a non-causal FIR Wiener filtering model. The latter is of particular interest

since it is the basis for the two-dimensional work that follows (see Chapter V).

a. Index Mapping

The FIR linear filtering problem involves computing the linear combi-

nation of some finite number of observations to determine an estimate of a desired

signal at a particular sample index, n = n0.

In the single-rate case, the region of support of the filter (see Sec-

tion III.D.3) is unambiguous. In the case of a causal filter, the filter uses x[n0]

through x[n0 − P + 1] to estimate d[n0]. In the multirate case, determining this re-

gion of support requires a way of relating corresponding sample indices between the
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desired and observation sequences. Developing this methodology, referred to as index

mapping, is the concern of this section.

Let us motivate the discussion by considering Figures 4.4 and 4.5, where

n

d[n]

x[n]

n

0 1

0 1 kk-1k-2

kk-1k-2

Figure 4.4. An illustration of ordinary causal FIR Wiener filtering and the relationship
between samples of sequences d̂[n] and x[n], P = 3.

the horizontal axes represent time. The first figure depicts single-rate estimation of the

0

0

1

1

k
n

d[n] 

x[m]
m

l1l −

Figure 4.5. An illustration of single-channel, multirate causal FIR Wiener filtering
and the relationship between samples of sequences d̂[n] and x[m], P = 2.

desired sequence d[n] at sample index n = k with a causal FIR filter of order P = 3.

Since both sequences are at the same rate, the region of support, the region encom-

passed by the rectangular “filter”, corresponds to observations x[k], x[k− 1], x[k− 2].

If we consider the underlying discrete-domain signals, we notice that both signals are

defined on the same “signal domain”, ΨTd
= ΨTx. Since both signals are defined on
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the same domain, the index value k for either sequence represents the same point in

time.

Figure 4.5 depicts multirate estimation of the desired sequence d[n] at

sample index n = k with a causal FIR filter of order P = 2. Here, we notice that the

underlying discrete-domain signals are not defined on the same domain. So, consider

a particular index value k. In general, the time at which d[k] occurs (kTd) is not the

same as the time at which x[k] occurs (kTx). There may be some other index value

l (see Figure 4.5), however, such that d[k] and x[l] occur at the same time or very

nearly at the same time. In an optimal filtering problem, we would generally like

d[k] and x[l] to be as close as possible. In addition, we may also require the filter to

be causal (see Definition 23). Establishing this correspondence is referred to as the

index mapping problem.

Let Ψd = {nTd; n ∈ Z} represent the signal domain that corresponds to

an arbitrary discrete-domain signal with sampling interval Td, and Ψx = {mTx; m ∈
Z} represent the signal domain that corresponds to its associated observation signal

with sampling interval Tx. Also, define a distance metric [Ref. 54] D[n, m] called the

index metric as

D[n, m] ≡ |nTd −mTx| = T |Kdn−Kxm|, (4.20)

where T is the system sampling interval. The index metric gives us a notion of

distance between any two indices from different signal domains. In fact, |Kdn−Kxm|
is the number of system samples between such indices. Figure 4.6 illustrates this

concept of distance for two arbitrary sample indices, n0 and m0. A normalized plot

of the index metric, for Kx = 3 and Kd = 1, is depicted in Figure 4.7(a). In this

case, D[n, m] = |n − 3m|, for 0 ≤ n, m ≤ 30. Each line contains the locus of points

associated with a particular value of n. Also, note that the index metric is identically

zero D[n, m] = 0 when n = 3m.

The index mapping problem is now stated. Given a discrete-domain

signal d at rate Fd and its associated observation signal x at a different rate Fx,

81



t

t

0 Td

Tx0

2Td n0Td

m0Tx

0 0 0 0( , ) d xD n m T K n K m= −
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Figure 4.6. Notion of distance between indices n0 and m0.

for a given sample index n = n0, associated with d, find the observation sample

index m = m0, associated with x such that the related index distance D[n0, m0] is

minimized, subject to certain constraints. Intuitively, this makes sense since the best

estimate of d[n0] should typically result from the closest observation samples.

If the problem of interest involves causal filtering (see Definition 23),

then the required constraint on the minimization is

nTd ≥ mTx or n ≥ Kx

Kd
m. (4.21)

This states that (on the system level) the output must not precede the observations.

Therefore, the problem is posed as

min
m

D(n, m) subject to n ≥ mKx

Kd

. (4.22)

The solution to this minimization is expressed as a mapping from the

estimation index to the observation index as

Mcausal : n→
⌊

nKd

Kx

⌋
, (4.23)

or

m = Mcausal(n), (4.24)
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where Kd and Kx are the associated decimation factors.

This minimization is illustrated in Figure 4.7(b), which displays a plot

of the index metric, again for Kx = 3 and Kd = 1, where the value of n has been

specified as n = 5. In this case, the causality constraint requires that n ≥ 3m, which

is indicated by the shaded region in the lower figure. Thus, the minimization pertains

only to that portion of D[5, m] contained within this region. By inspection, we see

that when m = 1, the index metric D[5, m] = 2 is at its minimum.

Continuing this example, for Kx = 3 and Kd = 1, with the causality

constraint, we have the following mappings from the set of estimate signal indices to

the observation signal index as shown in Table 4.1.

n m =
⌊

nKd

Kx

⌋
{0, 1, 2} 0

{3, 4, 5} 1

{6, 7, 8} 2

Table 4.1. Causal mapping from a set of estimate signal indices to the associated
observation signal index.

If there is no causality constraint (as in smoothing or image processing),

then the minimization is unconstrained and the problem is posed as

min
m

D[n, m]. (4.25)

The solution to this minimization is expressed as a mapping from the

estimate signal index to the respective observation signal index as

Mnc : n→
⌊

(n + 
Kx

2
�)Kd

Kx

⌋
, (4.26)

or

m = Mnc(n), (4.27)

where Kd and Kx are the associated decimation factors.
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Figure 4.7. (a) Normalized plot of D[n, m] in 3 dimensions. (b) Plot of D[n, m] versus
m for n = 5.
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Again, from Figure 4.7(b), we can illustrate this minimization, again at

n = 5, but now with no causality constraint. In this case, when the observation signal

index is m = 2, the index metric is D[5, 1] = 1, and the index metric is a minimum.

Note that this value of the observation signal index m is different from the previous

solution (a consequence of the causality constraint in the former problem).

Continuing this example, for Kx = 3 and Kd = 1, without the causality

constraint, we have the following mappings from the set of estimate signal indices to

the observation signal index as shown in Table 4.2.

n m =

⌊
(n+
Kx

2 �)Kd

Kx

⌋
{−1, 0, 1} 0

{2, 3, 4} 1

{5, 6, 7} 2

Table 4.2. Non-causal mapping from a set of estimate signal indices to the associated
observation signal index.

b. Single-channel, Multirate Wiener-Hopf Equations

Recall that the input-output relationship for the general multirate fil-

tering problem is given by (3.45) and is repeated here for convenience

y[my] =
∑
mx

h(l)[mx]x
[⌊Kymy

Kx

⌋
−mx

]
, where l = 〈my〉My

.

This equation can be written in terms of the single-channel, multirate estimation

problem as

d̂[n] =
∑
m

h(l)[m]x
[⌊Kdn

Kx

⌋
−m

]
, where l = 〈n〉Md

.

We can further generalize the form of the linear multirate estimate if we consider the

mapping issues discussed in Section IV.C.1(a). We can write (3.45) in terms of an

arbitrary mapping function as

d̂[n] =
∑
m

h(l)[m]x
[
M[n]−m

]
, (4.28)
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where M[ · ] is the appropriate mapping function (causal, non-causal), and l = 〈n〉Md
.

With a finite variant of (4.28), in the usual manner, we evoke the

orthogonality principle. Thus, for observations x[M[n]− i] for i = 0, 1, . . . , P − 1, we

can write

E{ε[n]x∗
[
M[n]− i

]
}

= E

{(
d[n]−

P−1∑
m=0

h(l)[m]x
[
M[n]−m

])
x∗

[
M[n]− i

]}
= 0,

for i = 0,1,. . . ,P-1, (4.29)

or
P−1∑
m=0

Rx[M[n]−m; i−m]h(l)[m] = Rdx[n; n−M[n]+ i]; i = 0, 1, . . . , P − 1, (4.30)

where l = 〈n〉Md
. This is called the discrete single-channel, multirate Wiener-Hopf

equation.

Applying the second part of the orthogonality principle, we find the

following expression for the minimum mean-square error

σ2
εmin

[n] = Rd[n; 0]−
P−1∑
m=0

h(l)[m]R∗
dx[n; n−M[n] + m]. (4.31)

Notice that if the observation sequence is stationary, then the associated

correlation function is independent of the mapping function and the Wiener-Hopf

equation can be written

P−1∑
m=0

Rx[i−m]h(l)[m] = Rdx[n; n−M[n] + m]; i = 0, 1, . . . , P − 1, (4.32)

where l = 〈n〉Md
.

The Wiener-Hopf equation expressed in its matrix form, for P = 3,

when the observation process is stationary:⎡
⎢⎢⎢⎣

Rx[0] Rx[−1] Rx[−2]

Rx[1] Rx[0] Rx[−1]

Rx[2] Rx[1] Rx[0]

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

h(l)[0]

h(l)[1]

h(l)[2]

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

Rdx[n; n−M[n]]

Rdx[n; n−M[n] + 1]

Rdx[n; n−M[n] + 2]

⎤
⎥⎥⎥⎦ , (4.33)
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where l = 〈n〉Md
. Notice that the correlation matrix is Toeplitz.

As in the ordinary Wiener filtering problem, the Wiener-Hopf equation

can be derived in matrix form by writing (4.28) as

d̂[n] = (x̃
[
M[n]

]
)T h(l), (4.34)

where if

x
[
M[n]

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

x
[
M[n]− P + 1

]
x
[
M[n]− P

]
...

x
[
M[n]

]

⎤
⎥⎥⎥⎥⎥⎥⎦ , (4.35)

then

x̃
[
M[n]

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

x
[
M[n]

]
x
[
M[n]− 1

]
...

x
[
M[n]− P + 1

]

⎤
⎥⎥⎥⎥⎥⎥⎦ , (4.36)

with x̃[M[n]] as defined in Section II.B.3, and where h(l) is defined as

h(l) =

⎡
⎢⎢⎢⎢⎢⎢⎣

h(l)[0]

h(l)[1]
...

h(l)[P − 1]

⎤
⎥⎥⎥⎥⎥⎥⎦ , (4.37)

where l = 〈n〉Md
.

Again, evoking the orthogonality principle (Theorem 3), the Wiener-

Hopf equation (4.30) can be expressed in its matrix form as

R̃∗
xh

(l) = r̃
dx
[
M[n]

], (4.38)

where l = 〈n〉Md
, and

r
dx
[
M[n]

] = E{d[n]x∗[M[n]
]}. (4.39)
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Equation (4.38) has the specific form (4.33) (for P = 3). The minimum

mean-square error can be written as

σ2
εmin

[n] = Rd[n; 0]− r̃T

dx
[
M[n]

]h(l)∗, (4.40)

where l = 〈n〉Md
.

c. Matrix Approach to the Single-channel, Multirate
Wiener-Hopf Equations

Another approach in developing the multirate Wiener-Hopf equations

involves the matrix representation concepts of Section III.E and results presented

in [Ref. 9]. Again, consider a multirate system comprised of an observation signal

x at rate Fx and a desired signal d at rate Fd, and let the order of the associated

filter be denoted P . Recall from (3.10), (3.14) and (3.18) that the system rate is

F = lcm(Fx, Fd), the associated decimation factors are Ki = F/Fi, and the system

sample period is N = lcm(Kx, Kd). The period of the filters required to form the

estimate d (see Section III.D.3.b(2), cyclostationary period) is K, and in the case of

single-channel, multirate estimation, K =
N

Kd
.

For any index n, the observation signal x, represented by the sequence

x[n], can be expressed

x̃(k)[n] = D
(k)
K x̃[n], k = {0, 1, . . . , K − 1}, (4.41)

where

x̃[n] =

⎡
⎢⎢⎢⎢⎢⎢⎣

x[n]

x[n− 1]
...

x[n− PKx + 1]

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

and D
(k)
K is a decimation matrix with delay (3.60). In this context, the decimation

matrix with delay is a mapping or transformation that extracts the samples in the

required causal region of support from the observation vector.
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The optimal estimate is formed from a linear combination of the ap-

propriate observation samples and associated filter coefficients and is given by

d̂k[n] = (x̃(k)[n])Th(k), k = {0, 1, . . . , K − 1}, (4.42)

where the reversal operation x̃[n] is defined in Section II.B.3. Note that in this

formulation, all signals and computations are at the system rate, and, as a result,

we are solving a more general problem since we estimate dTd
[n] at every point on the

system grid ΨT , not just on the signal domain ΨTd
. The desired estimate is recovered

by decimating the result by Kd.

In the usual manner, we form the error in estimation and evoke the

orthogonality principle. The Wiener-Hopf equation (4.30) can be expressed in its

matrix form as

R̃(k)
x h(k)∗ = r̃

(k)∗
dx , k = {0, 1, . . . , K − 1}, (4.43)

or in terms of single-rate statistical parameters (from (4.16) and (4.17)),

D
(k)
K R̃xD

(k)T
K h(k)∗ = D

(k)
K r̃∗dx, k = {0, 1, . . . , K − 1}. (4.44)

Applying the second part of the orthogonality principle yields an ex-

pression for the minimum mean-square error,

σ2
k = Rd[0]− r̃

(k)T
dx h(k)∗, k = {0, 1, . . . , K − 1}, (4.45)

where the subscript k on the mean-square error reflects the periodically time-varying

nature of the error.

2. Multi-channel, Multirate Estimation Problem

In the multi-channel, multirate optimal filtering problem, there are multiple

observation signals and these signals are allowed to be at rates different from the

desired signal. The goal is to estimate this underlying signal from the set of related

multirate observation signals. This notion is depicted in Figure 4.8 where there are
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M observation signals at rates denoted by mi, which may all be different. A general

expression for the estimate is

d̂[n] = φ [{xi[mi]; i = 0, 1, . . . , M − 1}] , (4.46)

where the scalar estimate is now a function of a set of multirate observation signals.

When the functional φ[·] is linear, then the estimate is formed from linear filtering.

x1 [m1 ]

d̂[n]Filter 
( )φ ⋅

x0 [m0 ]

xM-1 [mM-1 ]

d[n]

Figure 4.8. General multirate optimal filtering problem with M multirate observation
signals.

a. Multi-channel Index Mapping

In this section, we develop the mapping relationship between the esti-

mate and observation sample indices in a multi-channel, multirate system in order to

determine the required regions of support in linear filtering. In doing so, we develop

a set of mapping functions for the causal and noncausal FIR filtering problems. In

this context, the index mapping problem is, for a given index n, associated with the

estimate, to find the M observation indices mi, such that the related index distances

D[n, mi] are minimized, subject to certain constraints, where i = 0, 1, . . . , M − 1.

If the problem of interest involves causal filtering, then the required

constraint on the minimization is

nTd ≥ miTi or n ≥ Ki

Kd

mi, for i = 0, 1, . . . , M − 1. (4.47)

Therefore, the problem is posed as

min
mi

D(n, mi) subject to n ≥ Ki

Kd
mi, for i = 0, 1, . . . , M − 1. (4.48)
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The solution to this minimization is expressed as a mapping from the

estimate index to the observation indices as

Mcausal : n→
⌊

nKd

Ki

⌋
, (4.49)

or

mi = Mcausal(n), (4.50)

where Kd and Ki are the associated decimation factors, and i = 0, 1, . . . , M − 1.

The multi-channel, multirate causal filtering problem is depicted in

Figure 4.9.

0

0

0

1 n0

n

d[n]

x1[m1]

x2[m2]

m1

m2

n0-1

Figure 4.9. Concept of index mapping in multi-channel, multirate FIR Wiener filter-
ing.

If the problem of interest involves noncausal FIR filtering, then there

is no constraint on the minimization, and the problem is posed as

min
mi

D[n, mi] for i = 0, 1, . . . , M − 1. (4.51)
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By examining the appropriate plots of D[n, mi], the solution to this

minimization is found as a mapping from the high-rate index to the respective low-

rate indices as

Mnc : n→
⌊

(n + 
Ki

2
�)Kd

Ki

⌋
, (4.52)

or

mi = Mnc(n), (4.53)

where Kd and Ki are the associated decimation factors, and i = 0, 1, . . . , M − 1.

b. Multi-channel, Multirate FIR Wiener Filtering model

Recall that, for the single-channel FIR Wiener filtering model (4.28),

the estimate is written as

d̂[n] =
P−1∑
mx=0

h(l)[mx]x [M[n]−mx] ,

where l = 〈n〉 N
Kd

, and M[n] is the required mapping function (causal, non-causal,

etc.).

In the multi-channel model, we extend or generalize (4.28) to include

multiple observations as

d̂[n] =
M−1∑
i=0

P−1∑
m=0

h
(p)
i [m]xi [Mi[n]−m] , (4.54)

where p = 〈n〉 N
Kd

, P is the filter order, and Mi[n] is the mapping function associated

with the ith channel.

c. Multi-channel, Multirate Wiener-Hopf Equations

Using equation (4.54), we form the error in estimation and evoke the

orthogonality principle. Thus, we can write

E{ε[n]x∗
i

[
Mi[n]− j

]
}

= E

{(
d[n]−

M−1∑
r=0

P−1∑
s=0

h(p)
r [s]xr

[
Mr[n]− s

])
x∗

i

[
Mi[n]− j

]}
= 0,

0 ≤ i ≤ M − 1, 0 ≤ j ≤ P − 1 (4.55)
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or

M−1∑
r=0

P−1∑
s=0

Rxrxi[Mr[n]− s; Mr[n]−Mi[n] + j − s]h(p)
r [s]

= Rdxi[n; n−Mi[n] + j],

0 ≤ i ≤M − 1, 0 ≤ j ≤ P − 1, (4.56)

where p = 〈n〉 N
Kd

. These are called the discrete multi-channel, multirate Wiener-Hopf

equations.

As in the ordinary Wiener filtering problem, the multi-channel, multi-

rate Wiener-Hopf equations can be derived in matrix form by writing (4.54) as

d̂[n] =
M−1∑
i=0

(x̃i

[
Mi[n]

]
)T h

(p)
i , (4.57)

where if

xi

[
Mi[n]

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

xi

[
Mi[n]− P + 1

]
xi

[
Mi[n]− P

]
...

xi

[
Mi[n]

]

⎤
⎥⎥⎥⎥⎥⎥⎦ , (4.58)

then

x̃i

[
Mi[n]

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

xi

[
Mi[n]

]
xi

[
Mi[n]− 1

]
...

xi

[
Mi[n]− P + 1

]

⎤
⎥⎥⎥⎥⎥⎥⎦ , (4.59)

with x̃i

[
Mi[n]

]
as defined in Section II.B.3, and where h

(p)
i is defined as

h
(p)
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

h
(p)
i [0]

h
(p)
i [1]

...

h
(p)
i [P − 1]

⎤
⎥⎥⎥⎥⎥⎥⎦ , (4.60)

where p = 〈n〉 N
Kd

.
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Applying the orthogonality principle yields:

E{x̃i

[
Mi[n]

]
ε∗[n]} = E

{
x̃i

[
Mi[n]

](
d∗[n]−

M−1∑
r=0

(x̃r

[
Mr[n]

]
)∗Th(p)∗

r

)}
= 0

0 ≤ i ≤ M − 1, (4.61)

and the Wiener-Hopf equations can be expressed in their matrix form as

M−1∑
r=0

R̃∗
xixr

h(p)
r = r̃

dxi

[
Mi[n]

], 0 ≤ i ≤M − 1, (4.62)

where p = 〈n〉 N
Kd

, and

r
dxi

[
Mi[n]

] = E{d[n]x∗
i

[
Mi[n]

]}. (4.63)

Applying the second part of the orthogonality principle yields an ex-

pression for the minimum mean-square error:

σ2
εmin

[n]

= E{d[n]ε∗[n]} = E

{
d[n]

(
d∗[n]−

M−1∑
r=0

(x̃r

[
Mr[n]

]
)∗Th(p)∗

r

)}
,

0 ≤ i ≤ M − 1, (4.64)

or

σ2
p = Rd[n; 0]−

M−1∑
r=0

r̃T
dxr

[
n; n −Mr[n]

]
h(p)∗

r , 0 ≤ i ≤ M − 1, (4.65)

where p = 〈n〉 N
Kd

, and its index on the mean-square error reflects the periodically

time-varying nature of the error.

d. Matrix Approach to the Multi-channel, Multirate
Wiener-Hopf Equations

In the multi-channel, multirate optimal filtering problem, we also de-

velop a matrix-based method to develop the Wiener-Hopf equations. In this problem,

M observation signals are available to form the desired signal d, where M ≥ 2. The

estimate d̂ is formed by summing the output of M periodic filters of order P and is
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given by

d̂k[n] =

M−1∑
i=0

(x̃
(k)
i [n])Th

(k)
i , 0 ≤ k ≤ K − 1, (4.66)

where K is the period of the filters required for estimation and is given by K = 〈n〉N ,

where N is the system period. For any index n, the observation signal xi, represented

by the sequence xi[n], can be expressed as

x̃
(k)
i [n] = D

(k)
Ki

x̃i[n], 0 ≤ k ≤ Ki − 1, (4.67)

where

x̃i[n] =

⎡
⎢⎢⎢⎢⎢⎢⎣

xi[n]

xi[n− 1]
...

xi[n− PKi + 1]

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

with x̃i[n] as defined in Section II.B.3, and D
(k)
Ki

is a decimation matrix with delay

(3.60), where Ki is the decimation factor associated with the ith channel, and P is

the filter order. Again, note that, in this formulation, all signals and computations

are at the system rate, and, as a result, we are solving a more general problem since

we estimate d[n]Td
at every point on ΨT , not just on ΨTd

. The desired estimate can

be recovered by decimating the result by Kd.

Again, in the usual manner, we form the error in estimation and evoke

the orthogonality principle,

E{x̃(k)
i [n]ε∗[n]} = E

{
x̃

(k)
i [n]

(
d[n]−

M−1∑
j=0

(x̃
(k)
j [n])Th

(k)
j

)∗}
= 0,

0 ≤ i ≤ M − 1, (4.68)

and the Wiener-Hopf equation (4.30) can be expressed in its matrix form as

M−1∑
j=0

R̃(k)
xixj

h
(k)∗
j = r̃

(k)∗
dxi

, 0 ≤ i ≤M − 1, (4.69)
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and k = 〈n〉N , or in terms of single-rate statistical parameters (see (4.16) and (4.17)),

M−1∑
j=0

D
(k)
Ki

R̃xixjD
(k)T
Kj

h
(k)∗
j = D

(k)
Ki

r̃∗dxi
, 0 ≤ i ≤ M − 1. (4.70)

Applying the second part of the orthogonality principle yields an ex-

pression for the minimum mean-square error given by

σ2
εmin

[n] = E{d[n]ε∗[n]} = E

{
d[n]

(
d[n]−

M−1∑
i=0

(x̃
(k)
i [n])Th

(k)
i

)∗}
, (4.71)

or

σ2
k = Rd[n; 0]−

M−1∑
j=0

r̃
(k)T
dxi

h
(k)∗
i , 0 ≤ i ≤M − 1, (4.72)

or in terms of single-rate statistical parameters,

σ2
k = Rd[n; 0]−

M−1∑
j=0

r̃T
dxi

D
(k)T
Ki

h
(k)∗
i , 0 ≤ i ≤ M − 1, (4.73)

where the subscript k on the mean-square error reflects the periodically time-varying

nature of the error.

D. CHAPTER SUMMARY

In this chapter, the problem of signal estimation is introduced from an optimal

filtering perspective. Specifically, we consider linear filtering, where the optimality

criterion is based on minimizing the mean-square error (Wiener filtering).

To begin the discussion, the Wiener-Hopf equations for single-rate sequences

are reviewed, establishing the foundation upon which the single- and multi-channel,

multirate Wiener-Hopf equations are developed. These results are important to the

methods of signal and image reconstruction discussed in Chapter V.

Additionally, the concept of index mapping is proposed, which systematically

describes the relationship between samples of a signal at one rate to those of a signal

at another rate (indices in one signal domain to those in another signal domain). This
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concept is particularly well-suited for developing the required regions of support in

linear filtering. In detailing this relationship, both a causal and non-causal mapping

transformation are developed, but the notion of mapping is generalized, providing

a basis for the development of “generalized” multi-channel, multirate Wiener-Hopf

equations.

Finally, matrix-based approaches, using the matrix representations of Chap-

ter III, are used to develop the single- and multi-channel, multirate Wiener-Hopf

equations for implementation in Chapter V.
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V. SUPER-RESOLUTION SIGNAL AND

IMAGE RECONSTRUCTION

In this chapter, we apply the multirate and optimal estimation theory results

of Chapters III and IV to the problem of signal and image reconstruction. We start

by developing a 1-D methodology and begin the analysis of this method on a simple

test signal (a triangle wave) and evaluate the performance on this known data. We

then apply the procedure to image data when the image is processed along rows.

We then turn to the full problem of image reconstruction and discuss how

the 1-D multirate theory and methods extend to 2-D, present an image reconstruc-

tion methodology, and provide an example of the application of this methodology,

comparing results to other methods.

A. SIGNAL RECONSTRUCTION

Consider the problem of estimating a discrete random process d[n], which

cannot be observed directly, from a set of M related observation signals, represented

by {x0[m0], x1[m1], . . . , xM−1[mM−1]}. These observation signals are related to the

random process d[n] through various forms of distortion and interference. Further,

these signals may be at rates different from that of d[n], and observation signals at

the same rate may also be shifted in time with respect to one another.

1. Observation Model

In order to facilitate discussion, we present the observation model depicted in

Figure 5.1, which represents the ith observation signal. In this model, we consider

linear forms of distortion. Notice that the translation is along the system grid (ΨT )

and is indexed to the particular signal of interest (see e.g., s0 and s1 in Figure 5.2).

Further, notice that the downsampling factor is also indexed to a particular signal.
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Figure 5.1. Observation model, where observation signals xi[mi] are derived from an
underlying signal d, subject to distortion, additive noise, translation, and downsam-
pling.

If we consider signal s3[n], its associated downsampling factor is L3, which may be

different from that of other observation signals.

2. Optimal Estimation

As we have previously observed, if the desired signal d[n] and its observations

xi[mi] are jointly wide-sense stationary, then the linear filters required for optimal

mean-square estimation are periodically time-varying [Ref. 7]. In this case, we can

write the estimate as

d̂k[n] =
M−1∑
i=0

(x̃
(k)
i [n])Th

(k)
i (5.1)

where h
(k)
i is a set of time-varying filter coefficients of length Pi and x̃i[n] is a vector

of samples from the ith observation sequence. The periodic time variation is denoted

by the index k where 0 ≤ k ≤ L − 1, L is the system periodicity and k = 〈n〉L (see

Figure 5.3). In this analysis, we consider that the observations signals are maximally

decimated (see Section III.C.4) versions of d[n], where Li = L, and, in this case, the

observation vectors can be written as

x̃
(k)
i [n] = D

(〈k−i〉L)
L s̃i[n] (5.2)
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Figure 5.2. Observation sequences s0 and s1 shifted by a delay (i = 0, i = 1, respec-
tively).

and

s̃i[n] = [si[n], si[n− 1], . . . , si[n− PiL + 1]]T . (5.3)

The decimation matrix with time delay D
(〈k−i〉L)
L extracts the appropriate samples

from si[n] to form each observation vector.

Minimizing the mean-square error [Ref. 9] leads to a set of Wiener-Hopf

equations of the form⎡
⎢⎢⎢⎢⎢⎢⎣

R̃
(k)
00 R̃

(k)
01 . . . R̃

(k)
0L−1

R̃
(k)∗T
01 R̃

(k)
11 . . . R̃

(k)
1L−1

...
...

...
...

R̃
(k)∗T
0L−1 R̃

(k)∗T
1L−1 . . . R̃

(k)
L−1L−1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

h
(k)∗
0

h
(k)∗
1

...

h
(k)∗
L−1

⎤
⎥⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

r̃
(k)∗
d0

r̃
(k)∗
d1

...

r̃
(k)∗
dL−1

⎤
⎥⎥⎥⎥⎥⎥⎦

0 ≤ k ≤ L− 1, (5.4)

where the time average mean-square error [Ref. 9] is given by

σ2
ε = Rd[0]− 1

L

L−1∑
k=0

L−1∑
j=0

r̃
(k)T
dj h

(k)
j . (5.5)
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Figure 5.3. Reconstruction of the original signal from an ensemble of subsampled
signals based on optimal linear filtering

Notice that this is an arithmetic mean of the set of σ2
k, 0 ≤ k ≤ L−1. The correlation

terms are defined as

r̃
(k)
di = D

(〈k−i〉L)
L r̃di (5.6)

R̃
(k)
ij = D

(〈k−i〉L)
L R̃ijD

(〈k−j〉L)
L

∗T
(5.7)

and

Rd[0] = E{d[n]d∗[n]} (5.8)

where

r̃di = E{d[n]̃s∗i [n]} (5.9)

and

R̃ij = E{s̃i[n]̃s∗T
j [n]}. (5.10)

Solving the multirate Weiner-Hopf equations (5.4) yields a set of filter coefficients,

which can be used in the estimation of d[n] as depicted in Figure 5.3. The application

of these filters to the observation data is illustrated in Figure 5.4.
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Figure 5.4. Reconstruction of the original signal from an ensemble of subsampled
signals based on FIR Weiner filtering with decimation factor L = 3 and filter order P
= 4. The figure illustrates the support of the time-varying filters h

(k)
i at a particular

time, n = 15 and k = 0 (shaded circle).

The system equations can alternatively be derived using the appropriate map-

ping function. In this case, we find that the causal mapping function can be written

Msr : n→
⌊

n− i

L

⌋
=

⌊n

L

⌋
+

⌊
k − i

L

⌋
, (5.11)

or

mi = Msr(n), (5.12)

where L is the decimation factor, and k = 〈n〉L. Notice that the first term
⌊

n
L

⌋
of

the mapping function corresponds to the multirate filtering scenarios of Chapter IV;

however, we require an additional corrective term
⌊

k−i
L

⌋
to account for the translation

between signals.

Notice that if ⌊
n− i

L

⌋
=

⌊n

L

⌋
+

⌊
k − i

L

⌋
,

using the definition (2.41) of the common residue 〈n〉L, we can write

n =
⌊n

L

⌋
L + 〈n〉L.
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Then, by direct substitution⌊
n− i

L

⌋
=

⌊
n

L
− i

L

⌋
=

⌊⌊
n
L

⌋
L

L
+
〈n〉L
L
− i

L

⌋
=

⌊⌊n

L

⌋
+
〈n〉L
L
− i

L

⌋
.

Since
⌊

n
L

⌋
is always an integer, it can be moved out of the floor operation (2.40), to

obtain ⌊
n− i

L

⌋
=

⌊n

L

⌋
+

⌊〈n〉L
L
− i

L

⌋
.

By definition, k = 〈n〉L; therefore, we can write⌊
n− i

L

⌋
=

⌊n

L

⌋
+

⌊
k − i

L

⌋
.

Example 13. As an example, for L = 3, we have the following mappings from a

particular estimate index to the corresponding observation indices (recall that for the

maximally decimated case with L = 3, i = {0, 1, 2}) as shown in Table 5.1.

n mi = Msr(n)

12 {⌊12
3

⌋
+

⌊
0−i
3

⌋} = {4, 3, 3}
13 {⌊12

3

⌋
+

⌊
1−i
3

⌋} = {4, 4, 3}
14 {⌊12

3

⌋
+

⌊
2−i
3

⌋} = {4, 4, 4}

Table 5.1. Causal mapping from an estimate signal index to the associated observation
signal indices, for the maximally-decimated case, L=3.

These mapping transformations can be directly applied to the multi-channel, multi-

rate Wiener-Hopf equations (4.62) and (4.65).

3. Reconstruction Methodology

The process used in the reconstruction of a signal from a set of subsampled

observations is described as follows. First, a training signal, at the desired rate, is

obtained that is representative of the class of signals that will be processed. From

this signal, a maximally-decimated set of observations are derived and the single-

rate statistical parameters are extracted. Then, using the Wiener-Hopf equations
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developed in Section V.A.2, the filter coefficients are computed. With the class-

specific filter coefficients, we are able to reconstruct signals “of the same class” by

employing the estimate of (5.1). In other words, we use training data to develop

the required filter coefficients from a class-representative signal at the desired rate,

and apply these filters to any set of “representative” observations at a lower rate to

reconstruct the desired signal.

4. Application results

a. Reconstruction of a Known Waveform

To evaluate the performance of the proposed method, two examples are

presented. In the first example, a triangular waveform is considered for reconstruction.

Our method was compared to the method described in [Ref. 31], which can produce

an exact reconstruction of the triangular waveform if the highest frequency terms are

left out. Both methods produce accurate results when there is no noise added to the

observation sequences. When a small amount of noise is added to the observation

sequences, the exact reconstruction method fails to reliably reproduce the signal while

the method described here continues to produce a reasonably good approximation to

the signal even under severely noisy conditions. The original triangular waveform is

shown in Figure 5.5 (a). Also shown there are the reconstructed waveform (a) and

the mean-square error (b).

The observation sequences are shown in Figure 5.6. These were con-

structed by shifting the original sequence, downsampling by a factor of L = 3, and

adding white Gaussian noise. In this particular example, a signal-to-noise ratio (SNR)

of -4.8dB was used. For our purposes, SNR is computed from the ratio of signal power

to noise variance. Note that the underlying form of the original sequence is unde-

tectable.
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Figure 5.5. Simulation results using optimal linear filtering method for reconstruction;
SNR = −4.8dB, P = 8, and L = 3.
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Figure 5.6. Observation sequences of an underlying triangle waveform after being
subjected to additive white gaussian noise and subsampled by a factor of L = 3.
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As a precursor to consideration of the two-dimensional image recon-

struction problem, we applied the one-dimensional methods described here to image

data.

b. Extension to Two-Dimensional Reconstruction

We consider each row of the observed LR images as an observation sig-

nal vector belonging to the set {x0[m],x1[m], . . . ,xM−1[m]} (see Figure 5.7). Recon-

struction is then accomplished line-by-line until every row of each image is processed.

In this case, the original image is depicted in the left panel of Figure 5.8, and one of

d = [… 135   112   113   146   140    58 …]
T

Figure 5.7. Line-by-line processing of observation images.

its three subsampled observation images with additive white Gaussian noise is given

in the right panel. The image depicted in the left panel of Figure 5.9 represents

the result of applying standard nearest-neighbor interpolation to one of the three

noisy subsampled images, and the reconstructed image is shown on the right panel.

Although the image is processed in only one direction, there is significant improve-

ment over the interpolated image. In particular, note that edges of structures can be

observed in many cases where the interpolated image does not provide such detail.
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Figure 5.8. Original image (left); Subsampled observation image L = 3 with additive
white Gaussian noise, 0dB (right).

Figure 5.9. Result of applying standard nearest-neighbor interpolation to one of the
three noisy subsampled images (left); Reconstructed image (right).
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B. IMAGE RECONSTRUCTION

In this section, we consider the signal reconstruction problem in two dimen-

sions, i.e., super-resolution (SR) image reconstruction. This analysis is an extension

of the theory and application presented for the 1-D case. Specifically, we consider

the problem of estimating a two-dimensional discrete random process, which cannot

be observed directly, from a set of related observations, at a different sampling rate.

Like the 1-D problem posed earlier, the observation signals are related to the random

process through various forms of distortion and interference and these signals may

also be shifted in time with respect to one another.

1. Observation Model

In the context of SR image reconstruction, the underlying two-dimensional

signal (image) is at a high-rate (HR), and the observations are at some low-rate

(LR). The relationship between the HR signal and a particular observation image

((i, j)th−channel) is illustrated in the block diagram of Figure 5.10. This observation

model shows that each LR observation is acquired from the HR image subject to

distortion (typically blur), subpixel translation, downsampling, and channel noise.

We can represent the observation model as

Fij = D
(i)
L1

FGijD
(j)T
L2

+ ηij. (5.13)

The matrix F ∈ RML1×NL2 represents the desired HR two-dimensional signal (image)

with (MNL1L2) pixels. Its related LR observation is represented by the matrix

Fij ∈ RM×N . The matrix Gij is a linear operator that accounts for channel distortion

and matrix ηij represents the channel noise. The parameters L1 and L2 represent the

horizontal and vertical downsampling factors, respectively, and the parameters i and

j represent the horizontal and vertical subpixel translation, respectively. The matrix
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Figure 5.10. Observation model relating the HR image with an associated LR ob-
servation. Each LR observation is acquired from the HR image subject to distortion
(typically blur), subpixel translation, downsampling, and channel noise.

D
(k)
L is a decimation matrix with delay, defined in (3.60), and is used to extract the

appropriate pixels from the HR image to form a particular observation image. The

matrix on the left incorporates the horizontal downsampling and translation (L1, i)

while the matrix on the right incorporates the vertical downsampling and translation

(L2, j). A maximally decimated set (see Section III.C.4) of images is obtained from

{Fij}, i = 0, 1, . . . , L1 − 1, j = 0, 1, . . . , L2 − 1.

Example 14. This example illustrates the operation of decimation matrices with

delay on a HR image. Consider L1 = L2 = 3, i = 1 and j = 2; the HR image F with

G1,2 = I and η1,2 = 0 :

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D
(1)
3

⎡
⎣0 1 0 0 0 0

0 0 0 0 1 0

⎤
⎦

D
(2)
3

⎡
⎣0 0 1 0 0 0

0 0 0 0 0 1

⎤
⎦
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The product F1,2 can be written

⎡
⎣0 1 0 0 0 0

0 0 0 0 1 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

1 0

0 0

0 0

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣8 11

26 29

⎤
⎦ .

The observation image F1,2 is one of nine (L1×L2) possible configurations.

2. Optimal Estimation

Consider the set of LR observations {Fij} and the related HR image F. We

desire to form an estimate for the HR image by some weighted sum of the LR obser-

vations. The estimate can be written as

F̂ [n1, n2] =
L1−1∑
i=0

L2−1∑
j=0

〈fij[n1, n2],H
(k1,k2)
ij 〉, (5.14)

where the expression on the right represents the Frobenius inner product of the ma-

trices , defined in Definition 12. Here, the matrix fij[n1, n2] ∈ RP×Q is the set of pixels

that form the region of support within the appropriate LR observation, required to

form this estimate, and matrix H
(k1,k2)
ij is the corresponding set of filter coefficients. In

this discussion, this region of support is called the image mask and its associated set

of filter coefficients is called the filter mask. The filter masks are chosen to minimize

the mean-square error

E{‖�F− �̂
F‖2}, (5.15)

where the norm is the Frobenius norm; E{·} is the expectation operator; ki = 〈ni〉Li

for 0 ≤ ki ≤ Li; and (i, j) represent subpixel translation, with 0 ≤ i ≤ L1 − 1,

0 ≤ j ≤ L2 − 1, and (i, j) ∈ Z. In the maximally-decimated case, i and j span the

entire set {0, 1, . . . , L1 − 1} and {0, 1, . . . , L2 − 1}, respectively. Both the set of LR
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image masks{fij [n1, n2]} and filter masks {H(k1,k2)
ij } are further described in Sections

V.B.2(a) and V.B.2(c), respectively.

a. Index Mapping

Developing the LR image masks {fij} involves mapping indices in the

HR sample index domain ΨF to those in the LR sample index domain Ψij. For a

given pixel intensity F [n1, n2], the HR indices [n1, n2] map to a set of LR sample

indices {[m1, m2]ij}, which correspond to pixel intensities {Fij[m1, m2]}. The indices

corresponding to each observation matrix Fij are determined such that

|[n1, n2]− [m1, m2]ij| (5.16)

is minimized for each (i, j).

This mapping can be shown to be

[m1, m2]ij = [Mi(n1), Mj(n2)], (5.17)

where M[n] is defined

M : n→
⌊

n− i +
⌊

L
2

⌋
L

⌋
=

⌊n

L

⌋
+

⌊
k − i +

⌊
L
2

⌋
L

⌋
, (5.18)

mi = Msr(n), (5.19)

where nTd ∈ Ψd, miTi ∈ Ψi, k = 〈n〉L, and L is the decimation factor. Notice that the

first term
⌊

n
L

⌋
of the mapping function corresponds to the multirate filtering scenarios

of Chapter IV; however, we require an additional corrective term
⌊

k−i
L

⌋
to account

for the translation between signals.

b. LR Image Mask

The LR indices [m1, m2]ij for each observation represent the centroid

of each of the LR image masks. Given a desired mask size of P ×Q, each LR image

mask is comprised of the P ×Q pixels closest to Fij [m1, m2].

c. Filter Mask

If the desired HR image F and its observations {Fij} are jointly homo-

geneous, then the linear filters H
(k1,k2)
ij required for optimal estimation are periodically
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spatially-varying, an extension of [Ref. 7]. This periodicity can be described in terms

of the “phase” (k1, k2), where ki = ni mod Li. If we define the set of least posi-

tive residues as Λk = 0, 1, . . . , k − 1, then k1 ∈ ΛL1 and k2 ∈ ΛL2, and all possible

combinations of phase can be represented as ΛL1 × ΛL2.

Figures (5.11) and (5.12) depict the phase variation for L1 = L2 = 2.

In this case, Λ2 = {0, 1} and Λ2 × Λ2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. The spatial

periodicity of the phase can be observed by noting the regular recurrence of phase

terms.

(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (3,3)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

(0,0) (0,1) (0,0) (0,1)
(1,0) (1,1) (1,0) (1,1)
(0,0) (0,1) (0,0) (0,1)
(1,0) (1,1) (1,0) (1,1)
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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1 2
1 2,

L L
n n

Figure 5.11. Index representation to modulo representation with L1 = L2 = 2 (note
the spatial phase periodicity).

3. Reconstruction Methodology

a. Least Squares Formulation

In order to determine the filter masks {H(k1,k2)
ij } required to estimate

the HR image, a least squares (LS) approach is employed. We identify the set of all

HR pixels that correspond to a given phase and denote this set of HR pixels as the

matrix F(k1,k2). This concept is depicted in Figure 5.12 where each shape corresponds

to a unique phase (circle (0, 0), square (0, 1), triangle (1, 0), and star (1, 1)). From

(5.14), we can see that

⎡
⎢⎢⎢⎢⎢⎢⎣

F[l1, l2]

F[m1, m2]

F[n1, n2]
...

⎤
⎥⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
ij

〈fij[l1, l2],H(k1,k2)
ij 〉

∑
ij

〈fij[m1, m2],H
(k1,k2)
ij 〉

∑
ij

〈fij[n1, n2],H
(k1,k2)
ij 〉

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.20)
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(1,1)F

(1,0)F

(0,1)F

(0,0)F

F

Figure 5.12. Relationship between HR pixels and spatially-varying filter masks in
formulating the LS problem with L1 = L2 = 2.

where the left hand expression is F̃(k1,k2). From this, we can write

F̃(k1,k2) ls
= ΦH̃

(k1,k2)
ij , (5.21)

where Φ is the data matrix. This system of equations is solved in a least squares

sense for the required set of filter masks at each phase {H(k1,k2)
ij }.

b. Processing Method

The process used in the SR image reconstruction of a set of LR ob-

servations is described as follows. First, a HR training image is obtained that is

representative of the class of images that will be processed. From this image, a

maximally-decimated set of LR observations are derived and then through the least

squares methodology of Section V.B.3(a), filter coefficients are computed. With the

class-specific filter coefficients, we are able to reconstruct images “of the same class”

by employing the estimate of (5.14). In other words, we use training data to develop
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filter masks from a class-representative HR image, and then apply these filters to any

set of “representative” LR observations to reconstruct a HR image.

4. Application Results

In order to evaluate the performance of this method of image reconstruction,

we process the “skyline” image depicted in Figure 5.13, subject to varying degrees of

AWGN. The image used for the training process is the 204×204 pixel image segment

depicted in this figure. From this image, a set of filter coefficients is derived that is

used in SR image reconstruction.

Figure 5.13. Image segment used to train filter.

The target or object of the reconstruction is depicted in Figure 5.14. From

this 204×204 pixel image segment, LR observations are derived and are filtered using

the class-specific filter masks. The same level of AWGN is used for the training and

the target images.

Figure 5.15 depicts three members of the set of LR observations with various

subpixel translations. The first image represents subpixel translation by one pixel

in the horizontal direction and no translation in the vertical direction. The second

represents translation by one pixel in both the vertical and horizontal directions. The

third image represents translation by two pixels in both directions.
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Figure 5.14. Image segment to be estimated.

In the remaining figures, the left panel depicts the SR image reconstruction

using the proposed algorithm and the right panel depicts nearest-neighbor interpola-

tion of one of the LR observations. In every case, the proposed method is superior to

the interpolated result. During these experiments, other interpolation methods were

considered, including bilinear and bicubic methods; again, the proposed method was

found to be superior.

Figure 5.16 compares reconstructed and interpolated images for the case of no

additive noise, downsampling by 3 in both the vertical and horizontal directions, and

with filter mask size of 3 × 3. In this case, the reconstruction yields a result that is

visibly indiscernible from the target image.

Figure 5.17 compares reconstructed and interpolated images for the case of an

SNR = 5 dB, downsampling by 3 in both the vertical and horizontal directions, and

with filter mask size of 3× 3. In this case, we see the effects of additive noise on the

reconstruction. Despite some blurring of edges, details are still discernible.

Figure 5.18 compares reconstructed and interpolated images for the case of an

SNR = −1.5 dB, downsampling by 3 in both the vertical and horizontal directions,

and with filter mask size of 3 × 3. In this case, the effects of additive noise on
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Figure 5.15. Downsampled observation images with subpixel translations (1, 0), (1, 1),
and (2, 2), respectively; L1 = L2 = 3, P = Q = 3, and no AWGN.

the reconstruction are quite deleterious. Further blurring of edges is evident and

details have become hard to see. However, major features in the image are still

discernible. Thus, there is a significant advantage in using the proposed method

over interpolation, where not even major features are discernible. Note that the

poorer performance of the interpolation methods is not unexpected. In this case,

only a single LR observation image is used for reconstruction while in the case of

the proposed method, multiple, independent LR observations are used. Despite this

obvious disadvantage, the interpolation methods are used throughout the literature

as a benchmark [Ref. 1, 2, 28] and we follow here.

C. CHAPTER SUMMARY

In this chapter, the signal and image reconstruction problem is considered

from a multirate point of view (Chapter III), using the multirate optimal estimation

theory presented in Chapter IV.

First, the problem of reconstruction is posed in one dimension, in terms of

a set of observation sequences that are related to a desired random sequence. An

observation model is presented that models this relationship, accounting for linear
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Figure 5.16. Comparison between a reconstructed image and interpolated image;
L1 = L2 = 3, P = Q = 3, no AWGN.

distortion, additive noise, downsampling, and subsample translation. Signal recon-

struction is achieved by forming an estimate comprised of a linear combination of

samples of the observation sequences, and then developing and solving a set of re-

lated linear equations for the required filter coefficients. These coefficients are used

to filter LR data. Finally, the results of this proposed methodology are presented and

compared to other reconstruction methods.

Next, the super-resolution reconstruction problem is considered and posed in

terms of a set of 2-D observation sequences that are related to a desired 2-D random

sequence. Again, an observation model is presented that models this relationship,

accounting for linear distortion, additive noise, downsampling, and subpixel transla-

tion. Image reconstruction is achieved by forming a linear estimate comprised of a

linear combination of pixels in each LR observation image mask and developing and

solving a set of related linear equations for the required filter coefficients. Formation

of these image masks is based on extension of the non-causal 1-D index mapping

results to two dimensions. The resultant filter masks are used to filter LR image

data. Finally, the results of the proposed methodology are presented and compared

to other reconstruction methods.
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Figure 5.17. Comparison between a reconstructed image and interpolated image;
L1 = L2 = 3, P = Q = 3, and SNR = 5 dB.

Figure 5.18. Comparison between a reconstructed image and interpolated image;
L1 = L2 = 3, P = Q = 3, and SNR = -1.5 dB.
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VI. CONCLUSION AND FUTURE WORK

A. SUMMARY

In this dissertation, new signal processing methods for multirate signals in one

and two dimensions are developed and applied to the problem of “super-resolution”

signal and image reconstruction. In super-resolution processing a signal or image with

high-resolution is constructed by using data from several images of a lower resolution.

A significant contribution of this work is the development of the theory of mul-

tirate systems, which provides the foundation upon which the proposed reconstruction

methods are built. In developing this theory, a conceptual framework for the anal-

ysis of multirate systems is cited, which enables the extension of optimal estimation

and linear filtering theory to multirate systems. Further, it leads to the concept of a

system grid, which allows representation of the various signals in a multirate system

on a common domain.

System theory for multirate systems, also developed here introduces multirate

adaptations of the concepts of shift-invariance, periodic shift-invariance and causality.

In addition, the input-output relation of a multirate system is discussed in terms of the

system response and its associated Green’s function and is adapted to the multirate

problem in both system-level and signal-level representations. Finally, a method

is adopted to provide matrix representations for the operations of downsampling,

upsampling and linear filtering.

Another significant contibution of this work is the treatment of the problem

of signal reconstruction from a multirate, optimal filtering perspective. Recognition

that signal or image reconstruction can be viewed as a problem in signal estimation,

where a related low-rate (low-resolution) signal or set of signals is used to estimate

an underlying high-rate (high-resolution) signal, and that the observation signal or
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signals and the desired signal form a multirate system, motivates this work. In partic-

ular, it suggests that extension of well-known results for single-rate systems could be

extended to multirate signals and systems. In development of the resulting multirate

forms of the Wiener-Hopf equations, the concept of index mapping is proposed. Index

mapping systematically describes the relationship between samples of a signal at one

rate to those of a signal at another rate and is particularly important for developing

the required regions of support in linear filtering. In developing this relationship, both

causal and non-causal mapping transformations are considered. The overall concept

is more general, however, and provides a basis for the development of “generalized”

multi-channel, multirate Wiener-Hopf equations.

In applying the multirate and optimal estimation theory results to the prob-

lem of signal and image reconstruction, a one-dimensional method is first explored.

The analysis of this method starts with a simple test signal (a triangle wave) and

its performance is evaluated on this known data. The procedure is then applied to

image data when the image is processed along rows. Finally, the full two-dimensional

problem of image reconstruction is considered and an image reconstruction method-

ology is developed. An example of the application of this method is provided with a

comparison to results of other methods.

B. FUTURE WORK

As fundamental limits are reached in future image acquisition systems, inter-

est in signal processing solutions will continue to intensify, and in particular, the area

of super-resolution image reconstruction will likely be of great interest. During this

research, advances were made in the areas of multirate signal processing and optimal
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estimation theory, which led to development of the proposed reconstruction methods.

With these findings, other research opportunities became apparent, and are mentioned

here.

In the development of the multirate signal processing theory, several num-

ber theoretic results were obtained to describe the relationship between constituent

signals in a multirate system. These results were shown to extend directly to the

second moment analysis of such systems, but the second moment relationships were

never entirely understood. Future work in characterizing second moments, and even

higher moments, would provide further insight into the behavior of multirate systems.

Furthermore, frequency-domain characterizations of such systems would also provide

valuable insight, and would be a useful extension of [Ref. 12] on bifrequency and

bispectrum maps.

In the analysis of performance, the 2-D method developed here was compared

to standard interpolation methods, using a particular class of images. In future

work, it would be beneficial to compare the proposed method to other “state of

the art” algorithms [Ref. 1, 2]. Further, a more robust analysis of the proposed

method’s performance would be achieved if several classes of images were available

for comparison. Finally, it would be useful to examine the effects of linear distortion,

image rotation and non-Gaussian noise on performance.

Finally, in conducting this research, limitations were imposed on the sampling

rate of constituent signals of a multirate system. For our purposes, sampling rates

were constrained to be integer-valued. The theory developed in this work and in

[Ref. 59] could be generalized to include cases where real-valued sampling rates are

considered.
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